Joint Emission–Based Patient and Hardware Attenuation Correction for non–TOF PET/MR Imaging

Thorsten Heußer, Christopher M. Rank, Yannick Berker, Martin T. Freitag, Marc Kachelrieß

DOI:10.12059/Fully3D.2017-11-3103001

Published in:Fully3D 2017 Proceedings

Pages:259-262

Keywords:
hybrid PET/MR imaging, attenuation correction, MLAA
Accurate PET quantification requires attenuation correction (AC) for photon attenuation within the patient and within hardware components located between patient and de-tector. AC is a major challenge in hybrid PET/MR imaging, since standard MR images do not provide direct information on both patient and hardware attenuation. Conventional MR–based AC (MRAC) employed in clinical routine does not properly consider bone attenuation and entirely neglects attenuation of flexible hardware components such as MR–safe headphones. Both effects result in severe activity underestimation, especially in the brain region, making accurate PET quantification difficult. We have recently proposed two modifications of the maximum–likelihood reconstruction of attenuation and activity (MLAA) algorithm for non time–of–flight (TOF) PET/MR, simultaneously reconstructing attenuation and activity distributions from the PET emission data. MR–MLAA aims at improving patient attenuation estimation by incorporating MR–derived prior ex-pectations on the attenuation coefficients. The second algorithm, xMLAA, aims at estimating attenuation of flexible hardware components, without modifying the patient attenuation map. Both algorithms have been shown to significantly improve PET quantification compared to standard MRAC. In this work, MR–MLAA and xMLAA are combined to xMR–MLAA and applied to clinical PET/MR data of the head region. Compared to xMR–MLAA, conventional MRAC underestimates the average activity evaluated in the full brain by up to 15 %.
Thorsten Heußer
German Cancer Research Center (DKFZ)
Christopher M. Rank
German Cancer Research Center (DKFZ)
Yannick Berker
RWTH Aachen University
Martin T. Freitag
German Cancer Research Center (DKFZ)
Marc Kachelrieß
German Cancer Research Center (DKFZ)
  1. A. Mehranian, H. Arabi, and H. Zaidi, “Vision 20/20: Magnetic resonance imaging-guided attenuation correc-tion in PET/MRI: Challenges, solutions, and opportuni-ties,” Med. Phys., vol. 43, no. 3, pp. 1130–55, 2016.
  2. A. Martinez-M¨oller, M. Souvatzoglou, G. Delso, R. A. Bundschuh, C. Chefd’hotel, S. I. Ziegler, N. Navab, M.Schwaiger, and S. G. Nekolla, “Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data.” J. Nucl. Med., vol. 50, no. 4, pp. 520–6, 2009.
  3. T. Beyer, M. L. Lassen, R. Boellaard, G. Delso, M. Yaqub, B. Sattler, and H. H. Quick, “Investigating the state–of–the–art in whole–body MR-based attenuation correction: an intra–individual, inter–system, inventory study on three clinical PET/MR systems,” MAGMA, vol. 29, no. 1, pp. 75–87, 2016.
  4. M. Aznar, R. Sersar, J. Saabye, C. N. Ladefoged, F. L. Andersen, J. Rasmussen, J. L¨ofgren, and T. Beyer, “Whole–body PET/MRI: The effect of bone attenuation during MR–based attenuation correction in oncology imaging,” Eur. J. Radiol., vol. 83, no. 7, pp. 1177–83, 2014.
  5. N. Burgos, M. J. Cardoso, K. Thielemans, M. Modat, S. Pedemonte, J. Dickson, A. Barnes, R. Ahmed, C. J. Mahoney, J. M. Schott, J. S. Duncan, D. Atkinson, S. R. Arridge, B. F. Hutton, and S. Ourselin, “Attenuation Correction Synthesis for Hybrid PET–MR Scanners: Ap-plication to Brain Studies,” IEEE Trans. Med. Imaging, vol. 33, no. 12, pp. 2332–41, 2014.
  6. D. H. Paulus, H. H. Quick, C. Geppert, M. Fenchel,Y.Zhan, G. Hermosillo, D. Faul, F. Boada, K. P. Fried-man, and T. Koesters, “Whole–Body PET/MR Imaging: Quantitative Evaluation of a Novel Model–Based MR Attenuation Correction Method Including Bone,” J. Nucl. Med., vol. 56, no. 7, pp. 1061–6, 2015.
  7. C. N. Ladefoged, D. Benoit, I. Law, S. Holm, A. Kjær, L. Højgaard, A. E. Hansen, and F. L. Andersen, “Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging,” Phys. Med. Biol., vol. 60, no. 20, pp. 8047–65, 2015.
  8. B. Zhang, D. Pal, Z. Hu, N. Ojha, T. Guo, G. Muswick,H. Tung, and J. Kaste, “Attenuation correction for MR table and coils for a sequential PET/MR system,” in IEEE Nucl. Sci. Symp. Conf. Rec., 2009, pp. 3303–6.
  9. G. Delso, A. Martinez-M¨oller, R. A. Bundschuh, Ladebeck, Y. Candidus, D. Faul, and S. I. Ziegler, “Evaluation of the attenuation properties of MR equip-ment for its use in a whole–body PET/MR scanner,” Phys. Med. Biol., vol. 55, no. 15, pp. 4361–74, 2010.
  10. D. H. Paulus, H. Braun, B. Aklan, and H. H. Quick, “Simultaneous PET/MR imaging: MR–based attenuation correction of local radiofrequency surface coils.” Med. Phys., vol. 39, no. 7, pp. 4306–15, 2012.
  11. A. Ferguson, J. McConathy, Y. Su, D. Hewing, and Laforest, “Attenuation Effects of MR Headphones During Brain PET/MR Studies,” J. Nucl. Med. Technol., vol. 42, no. 2, pp. 93–100, 2014.
  12. F. B¨uther, A. Vrachimis, A. Becker, and L. Stegger, “Impact of MR–safe headphones on PET attenuation in combined PET/MRI scans,” EJNMMI Research, vol. 6,p.20, 2016.
  13. J. Nuyts, P. Dupont, S. Stroobants, R. Benninck, L.Mortelmans, and P. Suetens, “Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms.” IEEE Trans. Med. Imaging, vol. 18, no. 5, pp. 393–403, 1999.
  14. T. Heußer, C. M. Rank, M. T. Freitag, A.Dimitrakopoulou-Strauss, H.-P. Schlemmer, T. Beyer, and M. Kachelrieß, “MR–Consistent Simultaneous Reconstruction of Attenuation and Activity for Non–TOF PET/MR,” IEEE. Trans. Nucl. Sci., vol. 63, no. 5, pp. 2443–51, 2016.
  15. T. Heußer, C. M. Rank, M. T. Freitag, and M. Kachelrieß, “MLAA–Based Headphone Attenuation Estimation in Hybrid PET/MR Imaging,” in IEEE Nucl. Sci. Symp. Conf. Rec., 2016, pp. M10B–1.
  16. C. Comtat, F. Bataille, C. Michel, J. P. Jones, M. Sibo-mana, L. Janeiro, and R. Tr´ebossen, “OSEM–3D Recon-struction Strategies for the ECAT HRRT,” in IEEE Nucl. Sci. Symp. Conf. Rec., 2004, pp. 3492–6.
  17. J. Nuyts, B. De Man, P. Dupont, M. Defrise, P. Suetens, and L. Mortelmans, “Iterative reconstruction for helical CT: a simulation study,” Phys. Med. Biol., vol. 43, no. 4, pp. 729–37, 1998.