Simultaneous Emission-transmission Tomography (SET)

Lars Gjesteby, Wenxiang Cong, Ge Wang

DOI:10.12059/Fully3D.2017-11-3104003

Published in:Fully3D 2017 Proceedings

Pages:363-371

Keywords:
magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), polarized radiotracers, computed tomography (CT), multimodality imaging
A recently demonstrated imaging method combines MRI principles with nuclear medicine techniques to reconstruct a distribution of a polarized γ-ray emitting radioisotope. The resultant images achieve better spatial resolution than standard nuclear imaging and higher sensitivity than MRI. In this paper, we propose to acquire this form of MRI-modulated nuclear data for simultaneous image reconstruction in terms of both emission and transmission parameters, suggesting the potential for simultaneous CT-MRI-SPECT. The complementary information provides insight into tissue forms and molecular/cellular functions of features being imaged. Numerical simulation results of a lung phantom support the mathematical basis of our “SET” technique. Additional considerations are presented regarding the radiotracer characteristics and the imaging hardware.
Lars Gjesteby
the Biomedical Imaging Center, Department of Biomedical Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA.
Wenxiang Cong
the Biomedical Imaging Center, Department of Biomedical Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA.
Ge Wang
the Biomedical Imaging Center, Department of Biomedical Engineering at Rensselaer Polytechnic Institute, Troy, NY, USA.
  1. T. Beyer, D. W. Townsend, T. Brun, P. E. Kinahan, M. Charron, R. Roddy, J. Jerin, J. Young, L. Byars, and R. Nutt, “A combined PET/CT scanner for clinical oncology,” J Nucl Med, vol. 41, pp. 1369–1379, 2000.
  2. M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, and M. Eichner, “Simultaneous PET-MRI: a new approach for functional and morphological imaging,” Nat. Med., vol. 14, no. 4, pp. 459–465, 2008.
  3. M. Charron, T. Beyer, N. N. Bohnen, P. E. Kinahan, M. Dachille, J. Jerin, R. Nutt, C. C. Meltzer, V. Villemagne, and D. W. Townsend, “Image analysis in patients with cancer studied with a combined PET and CT scanner,” Clin. Nucl. Med., vol. 25, no. 11, pp. 905–910, 2000.
  4. A. Boss, S. Bisdas, A. Kolb, M. Hofmann, U. Ernemann, C. D. Claussen, C. Pfannenberg, B. J. Pichler, M. Reimold, and L. Stegger, “Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT,” J. Nucl. Med., vol. 51, no. 8, pp. 1198–1205, 2010.
  5. Y. Zheng, G. W. Miller, W. A. Tobias, and G. D. Cates, “A method for imaging and spectroscopy using γ-rays and magnetic resonance,” Nature, vol. 537, no. 7622, pp. 652–655, 2016.
  6. T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys., vol. 69, no. 2, p. 629, 1997.
  7. W. G. Myers, J. R. Dahl, and M. C. Graham, “Xenon-127m: a new radionuclide for applications in nuclear medicine.,” J. Nucl. Med. Off. Publ. Soc. Nucl. Med., vol. 31, no. 4, pp. 489–492, 1990.
  8. W. G. Myers, J. R. Dahl, and M. C. Graham, “Krypton-79m: a new radionuclide for applications in nuclear medicine.,” J. Nucl. Med. Off. Publ. Soc. Nucl. Med., vol. 27, no. 9, pp. 1436–1441, 1986.
  9. Z. Kuncic, A. McNamara, K. Wu, and D. Boardman, “Polarization enhanced X-ray imaging for biomedicine,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 648, pp. S208–S210, 2011.
  10. S. R. Cherry, “The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)—advances in PET imaging technology,” J. Nucl. Med., vol. 47, no. 11, pp. 1735–1745, 2006.
  11. [S. R. Cherry, R. D. Badawi, J. S. Karp, W. W. Moses, P. Price, and T.Jones, “Total-body imaging: Transforming the role of positron emission tomography.,” Sci. Transl. Med., vol. 9, no. 381, 2017.
  12. V. Spitzer, M. J. Ackerman,  a. L. Scherzinger, and D. Whitlock,“The visible human male: a technical report.,” J. Am. Med. Inform. Assoc., vol. 3, no. 2, pp. 118–130, 1996.
  13. T. Kashiwagi, K. Yutani, M. Fukuchi, H. Naruse, T. Iwasaki, K. Yokozuka, S. Inoue, and S. Kondo, “Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT,” Ann. Nucl. Med., vol. 16, no. 4, pp. 255–261, 2002.
  14. S. J. McMahon, D. Young, Z. Ballok, B. S. Badaruddin, V. Larbpaiboonpong, and G. Hawdon, “Vascularity of the femoral head after Birmingham hip resurfacing. A technetium Tc 99m bone scan/single photon emission computed tomography study,” J. Arthroplasty, vol. 21, no. 4, pp. 514–521, 2006.
  15. D. Homa, Y. Liang, G. Pickrell, D. Homa, Y. Liang, and G. Pickrell, “Superconducting fiber,” Appl. Phys. Lett., vol. 103, no. 82601, pp. 1–4, 2013.
  16. D. Homa, G. Kaur, G. Pickrell, and Y. Liang, “Efficient cooling of superconducting fiber core via holey cladding,” Cryogenics(Guildf)., vol. 61, pp. 25–30, 2014.
  17. O. Klein and T. Nishina, “Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac,” Zeitschrift für Phys. A Hadron. Nucl., vol. 52, no. 11, pp. 853–868, 1929.
  18. S. D. Swanson, M. S. Rosen, K. P. Coulter, R. C. Welsh, and T. E. Chupp, “Distribution and dynamics of laser-polarized 129 Xe magnetization in vivo,” Magn. Reson. Med., vol. 42, no. 6, pp. 1137–1145, 1999.
  19. M. M. Spence, S. M. Rubin, I. E. Dimitrov, E. J. Ruiz, D. E. Wemmer, A. Pines, S. Q. Yao, F. Tian, and P. G. Schultz,“Functionalized xenon as a biosensor,” Proc. Natl. Acad. Sci., vol. 98, no. 19, pp. 10654–10657, 2001.
  20. H. M. Rose, C. Witte, F. Rossella, S. Klippel, C. Freund, and L. Schröder, “Development of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations,” Proc. Natl. Acad. Sci., vol. 111, no. 32, pp. 11697–11702, 2014.