Keywords:
sparsity, normal variance mixtures, Bayesian inference, computed tomography
Unsupervised iterative reconstruction algorithms based on a Bayesian approach for piecewise constant images are presented in this paper. Such images can be expressed via a sparse representation and the reconstruction problem can be addressed using sparsity enforcing priors. We focus on sparsity enforcing priors expressed as Normal variance mixture, considering three mixing distributions: Inverse Gamma distribution, corresponding to Student-t prior, general inverse Gaussian distribution with the real parameter fixed, corresponding to Normal-inverse Gaussian prior and Gamma distribution corresponding to Variance-Gamma prior. We present and discuss the corresponding iter-ative algorithms considering the Joint Maximum A Posteriori estimation showing simulations results for 3D X-ray Computed Tomography.
- M. Dumitru
- Laboratoire des signaux et systemes (L2S) - CentraleSupelec
- N. Gac
- Laboratoire des signaux et systemes (L2S) - CentraleSupelec
- L. Wang
- Laboratoire des signaux et systemes (L2S) - CentraleSupelec
- A. Mohammad-Djafari
- Laboratoire des signaux et systemes (L2S) - CentraleSupelec
- N. Dobigeon, A. O. Hero, and J-Y Tourneret. Hierarchical bayesian sparse image reconstruction with application to mrfm. IEEE Trans. on Image Process, 18:2059 – 2070, 2009.
- M. Dumitru, A. Mohammad-Djafari, and Baghai S. S. Precise periodic components estimation for chronobiological signals through bayesian inference with sparsity enforcing prior. EURASIP Journal on Bioin-formatics and Systems Biology, Springer, 3, 2016.
- P. C. Hansen and D. P. O’Leary. The use of the l-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 14:1487–1503, 1993.
- Li Wang, Ali Mohammad-Djafari, Nicolas Gac, and Mircea Dumitru. Computed tomography reconstruction based on a hierarchical model and variational Bayesian method. In 2016 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pages 883–887. IEEE, 2016.
- David Wipf and Srikantan Nagarajan. Iterative reweighted l1 and l2 methods for finding sparse solutions. IEEE J. Sel. Topics Signal Process, 4:317–329, 2010.