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Abstract—Regularization parameter selection is crucial in CT 

iterative reconstruction because it is a balance between fidelity 

and penalty while there has not been so far a metric to judge if an 

optimal selection is made which results in the best reconstructed 

image quality in terms of a well balance between the apparent 

noise and the image fine structure. In this paper, we proposed a 

metric for selecting the optimal regularization parameter based 

on the property of natural image statistics. By using LoG 

operator and the pairwise products of neighboring LoG signals to 

extract the statistic features of the reconstructed image to 

account for the image quality, this proposed method evaluated all 

selected regularization parameters by calculating the variance of 

extracted statistic features and picked up the optimal 

regularization parameter with maximum curve of second order 

derivation of the calculated variance curve. Numerical and 

experimental results validated the efficiency of the proposed 

metric in terms of that the selected regularization parameter is 

accordance with the best visual observation. Besides, the 

proposed metric has low complexity of computation and only 

depends on features, which can be used in multiple situations. 

Keywords—regularization parameter, natural statistics, LoG, 

pairwise products, statistic features 

I. INTRODUCTION

Iterative reconstruction can cope well with incomplete data 
(such as low dose, limit angle, few views, interior problem, 
etc). Mathematically, the iterative reconstruction is a solution 
of an inverse problem. In the context of incomplete data, the 
inverse problem will be utmost ill-posed, which means small 
perturbations in observation data influences greatly the 
considered solutions

[1]
. In order to achieve a solution which 

approximates the noise-free reconstruction, numerous 
regularization strategies were proposed, such as truncated 
SVD, Tikhonov regularization, total variation, dictionary 

learning.
[2] When the regularization method is settled, it is 

essential to select a proper regularization parameter because it 
compromises the data fitting with regularization. 

As a matter of fact, a good solution of the iterative 

reconstruction relies on the selection of regularization 

parameter. In practice, the selection of regularization 

parameter can be time consuming. Hence, there are substantial 

strategies to select regularization parameter such as the 

discrepancy principle
[3]

, Generalized cross-validation(GCV)
[4]
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the L-curve
[5,6]

 (introduced by Lawson and popularized by 

Hansen), etc.As for the discrepancy principle, it requires an 

estimate of the noise level, which is not always available in 

practice and the existence of a solution is not guaranteed for 

some non-smooth functionals
[7]

. The GCV method estimates 

the mean square error(MSE), but the minimization of the 

objective functions are nontrivial because of their flat over a 

broad scale. The L-curve method is totally based on data, 

which is sensitive to curvature estimation
 [8]

.  

Image quality assessment (IQA) has recently aroused a hot 

discussion in the area of computer tomography as it provides a 

hint to solve the dilemma between noise and resolution of 

imperfect reconstruction caused by limited quantum. In 

general, image quality assessment can classify into two kinds: 

full reference and no reference. As there is no perfect 

reference image in real world medical imaging, no reference 

IQA is recommended for accessing medical images. Recently, 

there are multiple methods based on IQA model to solve 

medical imaging problems. Woodard et al presented  NR-IQA 

measure for structural MRI using two types of analysis of 

variance
[11]

. In [12], Nakhaie proposed a watermarking 

method using spread spectrum and discrete wavelet transform 

based on ROI processing. Dutta et al used a quantitative 

statistical method with closed-form analytical expressions to 

measure medical image quality with two metrics : covariance 

and resolution based on two analysis techniques: fixed point 

and iteration-based analysis
[13]

. All of the mentioned methods 

haven’t focus on the ideal selection of regularization 

parameters. Inspired by nature statistics, we proposed a 

heuristic IQA idea based on statistical properties using sparse 

transformation to get rid of first and second order of statistics 

to help select optimal regularization parameter.  With several 

experiment in simulated data and real data, the method 

performs well in selecting optimal regularization parameter. 

   This paper organized as follows. In section 2, we introduce 

the methods in details. Section 3 describes the material we 

used and the workflow. Section 4 presents several results of 

our algorithm. In the following section 5 the proposed method 

and its application are discussed. Our conclusion can be found 

in section 6. 

II. METHODS

Typically, an inverse problem always seeks an appropriate 

solution 
N

x R  to AX b . To alleviate the ill-posed 

problem, the solution can be achieved by using Lagrange 

Multiplier as objective function: 
2

2

arg min{ ( )} (1)
x

Ax b xx



 

A fidelity which quantifies the deviation between measured 

data and predicted data is the main constituent of objective 
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function. In iterative reconstruction, b


represents acquired

projection data consisting of exact projection data (
†

b ) and

inevitable acquisition error ε  during the acquisition physics, 

including the noise induced by limited quantum, i.e., 
†

b b


  . We denote A:
N M

R R as a bound and linear 

operator which is called system matrix in CT. The second term 

denoted as ( )x  represents the regularization term solely 

based on prior knowledge rather than the data.  as the 

regularization parameter compromises the fidelity term and 

penalty term.  

In fact, it is proved that the original solution x could be 

sparsely represented as follows: 
†

(2)x 

Where   represents the sparse coefficients of 
†

x in the

domain  . During our previous study, we found that after 

processing images with sparse operator, the coefficients of the 

images follow the distribution of Laplacian. Elements in   

have characteristic statistical properties which can be molded 

as Laplacian distribution with zero mean. Here is the 

histogram of  multiple medical images in Fig.1. 

Fig. 1. The sparse coefficients of medical images 

In addition, the noise component in the photon measurement 

in X-ray CT mainly consists of the noise caused by detection 

system electronics and the noise in X-ray CT is characterized 

by Gaussian random variable with zero mean
[14]

. In our 

hypothesis, when proper sparse operator is used the 

coefficients of noise also follow the Gaussian distribution. We 

separate the  as follow:   

(3)A 

In our previous work[8], it is explained in detail that the 

perfect solution relies on the selection of  . We use a simple 

model to validate the proposed model. In the assumption, we 

decompose the x




as follow: 

(4)x
 

   


 and


 denote the coefficients of signal and noise

respectively. 

In simulation, we selected a simple reconstruction with 

forward projection and adding noise to the phantom. 

Reconstructed with multiple regularization parameters, a 

series of recon images were generated. After de-convolution 

operation, we extracted the noise signal coefficients in 

different scale of regularization parameters and used kernel 

function to model the distribution of coefficients. The 

workflow  is describe in Fig.2 and  the curves of noise in 

different state of regularization parameters showed in Fig.3. 

Fig. 2. The workflow of the validation experiment

Fig. 3. The distribution of noise coefficients. From 
1

 to
4

 the regularization 

parameter decreases gradually . 

From the different curves of distribution, we found that the 

distribution of noise is Gaussian-like. When the regularization 

parameter is increasing, the tail of the distribution becomes 

higher and higher because its contains the information of 

reconstruction image coefficients whose distribution is 

Laplace. During the process, there exist the statement where 

the image quality is preserved with smallest noise. With these 

phenomena, we assume that a generalized Gaussian 

distribution (GGD) of the sparse coefficients can be used to 

capture the changes of the images with different  . In general, 

the distribution of the 


 and


 can be modeled as Gaussian 

distribution with zero mean. 

( )
2

( ; , ) (5)
1

2 ( )

x a

a
g x a

a

e 








where 

1
( )

3
( )

a

a



 



  and b 
1

0
( )

x t
x t e dt

 
  , 0x 
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In the formula, 2a  yields the Gaussian distribution and 1a 

yields the Laplacian distribution. 

During the selecting process, for example, we approach the
*

 by decreasing the  . The reconstructed images with 

different  appear to be more and more clearer and the noise is 

smaller and smaller until without the noise. The distribution of 

sparse coefficients of x




 in this process can be explained by 

this formula: 

 
2

1 1
( ) ( ; , ) (6)f g a

 
    

where
1

a  represents the shape parameter and
2

1
 denotes the 

variance.  

As the process proceeding, the shape parameter decreases 

so does the variance and 
1

1a   when
*

  .
 
While as the   

becomes smaller, the reconstructed image becomes noisy. The 

current x


which is decomposed as formula 4. The distribution 

of sparse coefficient


 can be modeled as follows: 

2 2

1 1 2 2
( ) (1 ) ( ; , ) * ( ; , ) (7)f t t g a g a

  
     

 
In this formula, t represents the harmonic coefficients which 

compromise the signal with noise. Commonly, the optimal 

reconstruction appears in the circumstance which the details 

are shown and the noise isn’t. In order to get the optimal 
 

reconstructed image, we exploited a novel method. In our 

method, we select the variance of the image as a media to help 

us select optimal
*

 . Same as the former process, when 

*
  , the variance increases as the  decreases and when 

continues to decrease, the variance increases much quicker 

because the noise is denser than signal. So the maximum 

curvature of the variance curve can be used to set the optimal 

point of
*

 .We can use the moment-matching based approach 

to gain the parameters like
2 2

1 2 1 2
( , , , , )t a a   , and by using 

these parameters, the desirable reconstruction is expected.  

Fig. 4. T-curve vs the 2nd order gradient of sparse coefficients in residual 

images. 
 

In the simulation, we validated our method in Shepp-Logan 

phantom image. First, by using forward projection, the 

sinogram of phantom was generated. After adding noise in the 

sinogram, we used multiple of  regularization parameters to 

reconstruct the phantom. Then, wiener filter was applied to 

estimate and eliminate noise. With the known ground-truth,  

several residual images were produced. Using sparse operator, 

we can get sparse coefficients in reconstruction images with 

different regularization parameters. Calculating all the 

standard  deviation of noise and  residual coefficients, the t in 

formula 7 can be solved. We set too small value as 0 in t curve. 

We found that the optimal regularization parameter selected 

by proposed method occurs in the neighbor where t appears to 

rise. 

After introducing our fundamental theory and method based 

on, we now talk about the sparse operator employed in our 

method. LoG (Laplacian of Gaussian) filter has a center 

surrounded profile that is symmetrically sensitive to intensity 

changes across all orientations
[9]

.  And it can easily get rid of 

first and second order statistical redundancy. Besides, it is 

proved that the LoG models the earliest stage output of human 

visual neural system and performs well in image quality 

assessment (IQA) model design. The LoG operator can be 

described as follows: 
2 2

2 2

2 2
2 2 2

2

2 4

( , ) ( , )

1 2 2 (8)
2

h g x y g x yLoG
x y

x y
x y

e

 

 

 

 
 
 


 



where 

2 2

2

2

1 2
( , )

2

x y

g x y e







 is the isotropic function with 

scale parameter . By using pairwise products of neighboring 

LoG signals along main diagonal direction, we found that the 

signs of the adjacent coefficients can get rid of more 

redundancy compared with single LoG in Table 1.  
 

Table 1.  The mutual information entropy 
 

Coefficients LoG Pairwise  of LoG 

mutual information entropy 0.2652 0.2115 

mutual information entropy 

(Gaussian white noise) 
 

0.0912 

 

0.1861 
 

Calculating the mutual information entropy of coefficients 

extracted by LoG and pairwise of LoG, it is cleared that  with 

the pairwise operation the redundancy is further removed 

compared with  boundary line.  

After pairwise products of adjacent LoG, we calculate the 

similarity of adjacent LoG coefficients with this formula: 

2 2

2 ( 1, 1) ( , )
( , ) (9)

( 1, 1) ( , )

L i j L i j
S i j

L i j L i j c

 


   

 

where c is a small positive constant to avoid numerical 

instability when denominator is small. In experiment c=1. We 

calculate variance of similarity coefficients and select the 
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optimal regularization parameter by the maximum curve of 2
nd

 

order gradient. 

Considering the removing efficiency of this multiplication, 

it can be used to extract the sparse coefficients and to help 

analyze the distributions of sparse coefficients. Hence, in our 

experiment, we use the LoG operator with  =0.5 and use

diagonal direction multiplication to reduce redundancy. 

III. EXPERIMENTS

We use several experiments to demonstrate the efficiency of 

our method. In general, we use two different regularization 

methods: total variation (TV) and dictionary learning. 

Futhermore, the experiment data varies from sheep lung 

perfusion to real data of human abdomen. During this process, 

it proves the independency of the method which can be used 

without limits. The sheep was scanned on the SIEMENS 

Somatom Sensation 64-slice CT scanner to acquire a 697 

1160 sinogram. The human abdomen raw projection derived 

from Mayo Clinic and use Single-slice rebinning method
[10]

 to 

obtain 736X2304 sinogram.  

The order subsets methods were used to accelerate the 

algorithm and choose TV regularization parameter ranging 

from 
7

0.28 1.1


 to 
7

0.28 1.1 with scale 1.1 in experiment. By 

using dictionary regularization, regularization parameter 

ranging from 
15

0.1 1.1


 /
7

0.2 1.1


  to
30

0.1 1.1 /
7

0.2 1.1 . 

With the different regularization parameters, a series of 

reconstructed images were created, 15 TV images and 46/15 

dictionary images respectively, which the quality of the 

reconstructed images vary from noisy ones to over smooth 

ones. We filtered every reconstructed image with LoG 

operator to remove redundancy and got the sparse coefficients. 

With adjacent multiplication, the further redundancy was 

removed. Then the similarity coefficients was calculated using 

equation(9). The variance is estimated using the moment-

matching based approach. The curves of the similarity 

variance vs  , along with the second order gradient of 

variance vs  , were plotted. The result demonstrates that the 

maximum curve of the second order of variance shows the 

optimal regularization parameter. 

IV. RESULTS

The results for optimal regularization parameter selecting 

are displayed as follows. The quality of the reconstructed 

images is from noisy ones to over-smooth ones which 

guarantees the suggested optimal regularization parameter by 

the proposed method is in the range. 

The result of selecting TV regularization parameter is 

depicted in Fig. 3.(a) showing noisy image with small 

regularization parameter, and (b) shows the optimal 

reconstructed image with selected regularization parameter by 

proposed method. (c) is the over smooth image with large 

regularization parameter. The result indicates that our method 

performs well in selecting TV regularization parameter. The 

reconstructed image selected by proposed method shows a 

good trade-off between noise and resolution. In second 

experiment, by using the dictionary as penalty, same as first 

experiment, the result shows in Fig. 4 and Fig .5. In the 

experiment, the sparsity and precision parameter is fixed, we 

only take regularization parameter in consideration. The 

reconstructed images (a1), (a2) are noisy due to the small 

regularization parameters. And in (b1),(b2), the images exhibit 

the optimal trade-off between resolution and noise. 

Additionally, the (c1),(c2) are the result with large 

regularization parameters which are over-smooth. The 

perpendicular line on the 2
nd

 order of the variance curve points 

out the optimal regularization parameter by the proposed 

method. The result indicates the proposed method also 

performs well in selecting dictionary learning regularization 

parameter. Overall,  the suggested method can be used in 

different kinds of regularization parameter and different 

reconstructed target.  

 (a)    (b)   (c) 

 (d) 

Fig. 5. (a), (b) and (c) are human abdomen reconstructions with different 

regularization parameters. Reconstructions correspond to different  as 

indicated by the black arrows in (d), respectively. Curves of the variance vs 

regularization parameter  and along with 2nd order gradient of the variance 

vs  , respectively. The perpendicular line which is in black points out the 

optimal regularization parameter by the proposed method. Note that the 

abscissa is normalized.  

V. DISCUSSION

As a handy tool, the proposed method using the statistic 

characteristic of nature image can be used to select the optimal 

regularization parameter. This process is very meaningful 

because the quality of reconstructed image depends on the 

selection of regularization parameter. Via this method, it can 

be a metric to judge if an optimal selection is made which 

results in the best reconstructed image quality in terms of a 

well balance between the noise and the image fine structure. In 

the following work, setting up CT database, this method can 

be used as a standard to select optimal reconstructions. Now it 

has proved its ability in choosing optimal regularization 

parameter in CT. So it is expected that this method can also 
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participate in various fields, such as MRI/PET/SPECT 

iterative reconstruction, natural image processing, etc. Besides, 

this proposed idea is not restricted to specific penalty term 

because the selection is based on statistic features so it can be  

widely used in total variation, low rank, and dictionary 

learning, etc. 
 

 
                           (a1)                             (b1)                          (c1) 

 
(d1)   

Fig. 6. First row are low dose sheep lung reconstructions with different 

regularization parameters. Reconstructions correspond to different  as 

indicated by the black arrows in (d1). Curves of the variance vs regularization 

parameter  and along with 2nd order gradient of the variance vs 

 ,respectively. The perpendicular line which is in black points out the 

optimal regularization parameter by the proposed method. 
 

 
(a2)                             (b2)                               (c2) 

 

          
                                                 (d2) 

Fig. 7.(a2), (b2), (c2) are quarter-dose human abdomen reconstructions with 

different regularization parameters. Reconstructions correspond to different

 as indicated by the black arrows in (d2). Curves of the variance vs 

regularization parameter  and along with 2nd order gradient of the variance 

vs  ,respectively.  

 

Compared with single LoG operator, the adjacent 

multiplication can get rid of more redundancy. And in real 

data, it is more robust than single LoG operator. Now this 

proposed method require a series of reconstructed images but 

our ultimate goal is to design an algorithm to select 

regularization parameter adaptively. 
 

VI. CONCLUSION 

This method has been tested that shows encouraging results 

on several examples. It is based on the early human vision 

system which is a heuristic idea for parameter selecting. 

What’s more, the adjacent multiplication ensures the sparsity 

and robustness of the method. This method can be used as a 

standard to help select regularization parameter.  
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