
1

High Temporal-Resolution Dynamic PET Image
Reconstruction Using A New Spatiotemporal Kernel
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Abstract— Current clinical dynamic PET has an effective
temporal resolution of 5-10 seconds, which can be adequate
for traditional compartmental modeling but is inadequate for
exploiting the benefit of more advanced tracer kinetic modeling.
There is a need to improve dynamic PET to allow 1-second
temporal sampling. However, reconstruction of these short-time
frames from tomographic data is extremely challenging as the
count level of each frame is very low and high noise presents
in both spatial and temporal domains. Previously the kernel
framework has been demonstrated as a statistically efficient
approach to utilizing image prior for low-count image reconstruc-
tion. Nevertheless, the existing kernel methods mainly explore
spatial correlations in the data and only have a limited ability
in suppressing temporal noise. In this paper, we propose a new
kernel method which extends the previous spatial kernel method
to the general spatiotemporal domain. The new kernelized model
encodes the spatiotemporal correlations obtained from image
prior information and is incorporated into the PET forward
projection model to improve the maximum likelihood (ML) image
reconstruction. Computer simulations show that the proposed
approach can achieve effective noise reduction in both spatial
and temporal domains and outperform the spatial kernel method
and conventional ML reconstruction method for improving high
temporal-resolution dynamic PET imaging.

Index Terms— High temporal resolution, dynamic PET, image
reconstruction, maximum likelihood, image prior, kernel method,
spatiotemporal correlation

I. INTRODUCTION

Dynamic positron emission tomography (PET) can monitor
spatiotemporal distribution of a radiotracer in human body.
With tracer kinetic modeling, dynamic PET is capable of quan-
tifying physiologically or biochemically important parameters
in regions of interest or voxelwise to detect disease status and
characterize severity. Traditionally compartmental modeling
is used for kinetic analysis of dynamic PET data. Other
advanced tracer kinetic models [1] such as the distributed-
parameter model and its approximations are considered closer
to the physiological process than compartmental models. How-
ever, those models have not been well explored in dynamic
PET because the effective temporal resolution of clinical
dynamic PET has been limited to 5-10 seconds with already-
compromised image quality [2].

We aim to improve the effective temporal resolution of
clinical dynamic PET to 1-2 seconds to value the use of ad-
vanced kinetic modeling in PET. To achieve the high temporal
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resolution, short scan durations must be used, which however
results in very low counting statistics in the dynamic frames.
Image reconstruction from the low-count projection data is
extremely challenging because tomography is ill-posed and
high noise exists in tomographic measurement.

In PET, incorporation of image prior information into image
reconstruction has become a popular means to improve the
quality of reconstructed images [3]. The prior information
can be either local smoothness of neighboring pixels or
obtained from a co-registered anatomical MRI or CT image.
While most of existing reconstruction methods employ an
explicit regularization form to incorporate image prior and
can be complex for practical implementation, the recent kernel
method [4]–[6] encodes image prior information in the forward
model of PET image reconstruction and requires no explicit
regularization. The kernel method is easier to implement and
can be more efficient and better improve image reconstruction
than regularization-based methods [4], [5].

Existing kernel methods [4]–[6] mainly explore spatial
correlations of image pixels to improve image quality in the
spatial domain. These spatial kernels, however, have a limited
ability in suppressing noise in the temporal domain. In high
temporal-resolution dynamic PET imaging, noise variation in
the temporal domain can be very severe because many short-
time frames are used. It is therefore desirable to include
temporal prior knowledge in the kernel method to suppress
temporal noise. In this paper, we extend the spatial kernel
method to a spatiotemporal kernel method that allows both
spatial and temporal correlations to be encoded in the kernel
matrix. We propose a separable spatiotemporal kernel to make
the method more computationally tractable and easier use. The
new method is expected to achieve substantial noise reduction
in temporal domain in addition to the enhancement on image
quality by existing spatial kernels.

II. THEORY

A. Dynamic PET Image Reconstruction

For a time frame m, we denote the PET image intensity
value at pixel j by xj,m and the measurement in detector pair
i by yi,m. The expectation of the dynamic projection data ȳ =
{ȳi,m} is related to the unknown dynamic image x = {xj,m}
through

ȳ = Px+ r (1)

where P is the detection probability matrix for dynamic PET
and r is the expectation of dynamic random and scattered
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events [3].
Dynamic PET projection measurement y = {yi,m} can be

well modeled as independent Poisson random variables with
the log-likelihood function [3],

L(y|x) =

ni∑
i=1

M∑
m=1

yi,m log ȳi,m − ȳi,m − log yi,m!, (2)

where ni is the total number of detector pairs and M is the
total number of time frames. The maximum likelihood (ML)
estimate of the dynamic image x is found by maximizing the
Poisson log-likelihood,

x̂ = arg max
x≥0

L(y|x). (3)

The expectation-maximization (EM) algorithm [7] with the
following iterative update

xn+1 =
xn

P T1N
·
(
P T y

Pxn + r

)
, (4)

is often the choice to find the solution, where 1N is a
vector of length N = ni × M with all elements being 1,
n denotes iteration number and the superscript “T ” denotes
matrix transpose. The vector multiplication and division are
element-wise operations.

B. The Spatiotemporal Kernel Method

The kernel method for tomographic image reconstruction
[4] was inspired by the kernel methods for classification and
regression in machine learning. Different from the kernel
methods in machine learning, the kernel method for image
reconstruction has unknown “label” values and the available
data for kernel coefficient estimation is the tomographic pro-
jection data. Previously the kernel method [4] was derived for
frame-by-frame spatial image reconstruction, here we adapt
the expressions for spatiotemporal reconstruction.

In machine learning language, the image intensity xj,m
at pixel j in time frame m is the “label” value. For each
spatiotemporal location, a set of features are identified to form
the feature vector fj,m, which is also called a “data point” in
machine learning. A mapping function φ(fj,m) is then used
to transform the data points {fj,m} into a feature space of
very-high dimension {φ(fj,m)}. By doing this, the “label”
value xj,m can be better described as a linear function in the
high-dimensional feature space,

xj,m = wTφ(fj,m) (5)

where w is a weight vector which also sits in the transformed
space:

w =

nj∑
j′=1

M∑
m′=1

αj′,m′φ(fj′,m′) (6)

with α being the coefficient vector. nj is the number of pixels
in image. By substituting (6) into (5), the kernel representation
for the image intensity at pixel j and in time frame m is written

as

xj,m =

nj∑
j′=1

M∑
m′=1

αj′,m′φ(fj′,m′)Tφ(fj,m) (7)

=

nj∑
j′=1

M∑
m′=1

αj′,m′κ(fj,m,fj′,m′), (8)

where
κ(fj,m,fj′,m′) , φ(fj,m)Tφ(fj′,m′) (9)

is a kernel defined by the kernel function κ(·, ·) (e.g. radial
Gaussian function). The mapping function φ is now implicitly
defined by the kernel and not required to be known. The image
intensity xj,m at pixel j in time frame m is thus described as
a linear function in the kernel space but is nonlinear in the
original space of the data points {fj,m}. With x denoting the
dynamic image and K the spatiotemporal kernel matrix, The
equivalent matrix-vector form of (8) is

x = Kα. (10)

where α , {αj,m} denotes the kernel coefficient vector.
Substituting the kernelized image model (10) into the

standard PET forward projection model (1), we obtain the
following kernelized forward projection model for dynamic
PET image reconstruction:

ȳ = PKα+ r. (11)

The advantage of using this kernelized model (11) is that
image prior knowledge can be incorporated in the forward
projection to improve the reconstruction of low-count scans.

A kernelized EM algorithm can be easily derived [4]. The
EM update of α at iteration (n+ 1) is

αn+1 =
αn

KTP T1N
·
(
KTP T y

PKαn + r

)
. (12)

Once the coefficient image α is estimated, the reconstructed
dynamic PET image is calculated by

x̂ = Kα̂. (13)

C. Separable Spatiotemporal Kernel

The kernel matrixK encodes image prior information based
on the feature vectors {fj,m}. For each pixel j in time frame
m, we identify a set of features to form fj,m,

fj,m = [(fsj )T , (f tm)T ]T , (14)

where the vector consists of two components. fsj is the vector
for exploring spatial correlations between pixels and f tj is for
exploring temporal correlations between frames.

We further define the spatiotemporal kernel function
κ(fj,m,fj′,m′) to be spatially and temporally separable, i.e.

κ(fj,m,fj′,m′) = κs(f
s
j ,f

s
j′)κt(f

t
m,f

t
m′) (15)

where κs(·, ·) denotes the kernel function for calculating
spatial correlations and κt(·, ·) is for calculating temporal
correlations.
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Thus the overall spatiotemporal kernel matrix K is decou-
pled into a spatial kernel matrix Ks ∈ IRnj×nj and a temporal
kernel matrix Kt ∈ IRM×M ,

K = Kt ⊗Ks, (16)

where ⊗ represents the Kronecker product.
Derivation of the spatial kernel matrix Ks has been de-

veloped in our previous work [4]. Ks is often formed as a
sparse matrix based on image prior data. For obtaining image
prior in dynamic PET, an effective and efficient means is to
use composite frames [4]. For example, an one-hour dynamic
FDG-PET scan can be first rebinned into three composite
frames, each with 20 minutes. From the reconstructed com-
posite images, three time activity points are obtained at each
pixel j and used as the feature vector fsj to construct the kernel
matrix.

The spatial kernel method [4] is a special example of
the spatiotemporal kernel method with the temporal kernel
matrix set to the identity matrix Kt = IM . In this paper,
we explore the role of Kt in the context of high temporal-
resolution dynamic PET imaging. The (m,m′)th element of
Kt is obtained by comparing the feature vectors of the frames
m and m′:

κt(f
t
m,f

t
m′) =

{
exp

(
− ||f

t
m−f

t
m′ ||2

2σ2
t

)
, |τm − τ ′m| < dt,

0, otherwise.
(17)

where τm denotes the middle time point of frame m and dt is
the width of time window for neighborhood construction. σt
is a parameter to adjust the weight calculation.

The simplest form of the temporal feature f tm is probably

f tm , τm (18)

by which Kt becomes a shift-invariant Gaussian smoothing
kernel. This type of kernel can smooth out noise but may
also over-smooth sharp signals in temporal domain. To make
the temporal kernel more adaptive to time varying data, we
propose to use the whole sinogram of each frame as the feature
vector to capture temporal correlations between frames, i.e.

f tm , ỹm (19)

where ỹm denotes a smoothed version of the raw sinogram
ym of frame m.

As both Ks and Kt are very sparse, inclusion of the kernel
matrix K in the projection model does not add a significant
computational cost in the reconstruction.

III. SIMULATION RESULTS

Dynamic PET scans were simulated for a GE DST whole-
body PET scanner using a Zubal head phantom (Figure 1).
The scanning schedule consisted of 91 time frames over 60
minutes: 60×1 s, 12×5 s, 3×40 s, 4×60 s, 4×180 s and
8×300 s. Regional time activity curves were assigned to
different brain regions. Dynamic activity images were first
forward projected to generate noise-free sinograms. A 20%
uniform background was included to simulate random and
scattered events. Poisson noise was then generated with 50
million expected events over 60 minutes.

Fig. 1. The digital Zubal phantom used in the simulation studies is composed
of gray matter, white matter and a tumor (15mm in diameter).

The noisy sinograms were reconstructed independently by
four different image reconstruction methods: the traditional
MLEM method, spatial kernelized EM (KEM-S), and new
spatiotemporal kernel method with the Gaussian smoothing
temporal kernel (KEM-ST-G, defined using Eq. (18)) and the
spatiotemporal kernel method with the data-driven temporal
kernel (KEM-ST-D, defined using Eq. (19)). The spatial kernel
matrix was constructed using the k nearest neighbor (kNN)
approach described in [4] and four composite images (1×5-
minute, 1×15- minute, 2×20-minute) which were obtained
by recombining the full 60-minute dynamic data. The time
window used for temporal kernel matrix was set to dt = 15s.
Signal-to-noise ratio (SNR) was used as the figure of merit to
evaluate image quality.

As our goal is to compare the reconstruction methods for
high temporal resolution dynamic PET imaging, here we only
show the results for the first one minute (60 1-second frames)
of the dynamic scan. This early phase has very fast kinetics
and is challenging to reconstruct.

Figure 2 shows the true activity image and reconstructed
images by the four different methods for the 1-s time frame at
t = 25s. We also rebinned the 1-s dynamic frames to generate
10-s frames to compare the effect of scan durations. The
reconstruction of the 10-s frame centered at t = 25s by MLEM
is shown in Figure 2 (f). As expected, the spatial kernel method
(KEM-S) achieved a significant SNR increase compared with
the MLEM method. By incorporating temporal correlations,
the spatiotemporal kernel methods (KEM-ST-G and KEM-ST-
D) further improved the image quality with higher SNR values
than KEM-S. The MLEM of the 10-s frame has a much higher
SNR than the MLEM of the 1-s frame. The SNR improvement,
however, is still much lower than all the KEM reconstructions.

Figure 3 shows the plots of image SNR of all the 60 1-s
time frames for different methods. The SNR of each frame is
maximized over iteration numbers in different methods. The
three KEM methods outperformed the MLEM reconstruction
for all 1-s frames and also had higher SNR than the MLEM of
10-s frames. Compared with the spatial kernel method KEM-
S, the spatiotemporal kernel methods KEM-ST-G and KEM-
ST-D improved the late frames. This is because the TACs
of these frames are lower and more flat than early frames
(see Figure 4). Incorporation of temporal correlations thus
became beneficial and achieved noise reduction. KEM-ST-
D and KEM-ST-G had similar performance given the two
temporal kernels were close to each other in these late frames.
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(a) True (b) 1s scan, MLEM, -0.9dB (c) 1s scan, KEM-S, 15.3dB

(d) 1s scan, KEM-ST-G, 17.0dB (e) 1s scan, KEM-ST-D, 18.4dB (f) 10s scan, MLEM, 8.6dB

Fig. 2. True activity image at t = 25s and comparison of different reconstructions at iteration 50. (1) True image of the 1-s time frame at t = 25s; (b-e)
reconstructed images by the four different methods: (b) MLEM, (c) spatial kernel method (KEM-S), (d) spatiotemporal kernel method with the time-invariant
Gaussian smooth kernel (KEM-ST-G), (e) spatiotemporal kernel method with a data-driven temporal kernel matrix (KEM-ST-D), and (f) MLEM reconstruction
of an extended 10-s scan at t = 25s. Image SNR in dB is included with each image.

Fig. 3. Plots of Image SNR of 60 1-s time frames in different methods.

In the early frames where activity change is fast, use of the
time invariant temporal kernel in the KEM-ST-G method over-
smoothed the temporal signals. Thus KEM-ST-G had even
lower SNR than KEM-S. In comparison, KEM-ST-D had data-
adaptive temporal kernels and achieved the best overall results.

Figure 4 demonstrates the MLEM and KEM reconstructions
of high temporal resolution (1s) TACs for the blood and
tumor regions. The low-resolution (10s) TACs by MLEM
were also included. The 1-s TACs by MLEM captured finer
temporal changes but generally had higher noise than the 10-s
reconstructions, especially in the tumor region. The noise in
the blood region was relatively small because its activity was
much higher than other regions. The spatial kernel method
KEM-S was unable to suppress temporal noise, though it had
achieved a significant noise reduction in spatial domain. In

comparison, the new spatiotemporal kernel method (KEM-
ST-D) overcame the limitation of MLEM and KEM-S and
achieved high temporal resolution and low noise in the recon-
structed TACs.

IV. CONCLUSION

In this paper, we proposed a spatiotemporal kernel method
to incorporate both spatial and temporal prior information into
the kernel framework for dynamic PET image reconstruction.
The spatiotemporal kernel is separable in the spatial and
temporal domains and thus can be easily and efficiently
implemented. We conducted a computer simulation to validate
the method and compared different temporal kernel matrices.
The results demonstrated the new kernel method outperformed
existing methods and achieved high temporal-resolution while
maintaining noise at a low level. Future work will include
comparisons with regularization-based reconstruction methods
and application of the method to patient data.
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(a) Blood region (b) Tumor region

Fig. 4. Time activity curves reconstructed by MLEM and KEM. (a) Blood region, (b) tumor region.
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