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I. INTRODUCTION

Most iterative PET reconstruction methods are
based on formulating a function relating the ob-
served acquired data to the unknown emission
image. The reconstructed image represents either
the zero, the minimum, or the maximum of this
function: it is found using di�erent numerical
optimization methods and may not be unique. A
thourough review of existing iterative methods can
be found in Qi and Leahy [7].
Usually, the observed acquired data are modeled

as a random variable, where the randomness comes
from the noise or from unwanted signals, and the
image is regarded as deterministic and �xed. This
is the case for MLEM and its variations. As
PET reconstruction is an ill-posed inverse problem,
and rather challenging to solve, some methods
introduce additional constraints and prior assump-
tions which can drive the �nal solution into some
desirable directions. These methods have two
theoretical interpretations leading to equivalent
algorithms: 1) the image is regarded as determinis-
tic, but a penalty term is added to the function
(penalized maximum likelihood) 2) the image is
regarded as a random variable, and the solution
represents the maximum of the posterior distri-
bution (MAP or maximum a posteriori). These
methods have been used extensively for introducing
assumptions about local smoothness in the image
and for integrating anatomical information from
other modalities into PET images. Integration of
supplementary anatomical information into PET
reconstruction may cause improvements in spatial
resolution, partial volume issues, bias-variance per-
formance, etc. A thorough review of anatomically
aided PET reconstruction methods and of their
added value to PET images can be found in Bai
et al. [2].
Only a few methods have explored more in depth

the random nature of these models, by trying to
recover entire posterior probability distributions

(Higdon et al. [5], Weir [10], Barat et al. [3], Sitek
[8]).
There are several advantages of estimating the

entire posterior probability distribution instead of
a single solution for the image: the posterior
distribution re�ects the uncertainty of the observed
data, and intervals on this distribution (credible
intervals) can be either used for interpretation or
for statistical tests.
In this paper, we present a probabilistic recon-

struction model that seeks to infer the entire poste-
rior probability distribution of emission concentra-
tion in the imaged object, given observed acquired
PET and coregistered anatomical multimodal data.
It is based on the Bayes theorem, though we avoid
using the label Bayesian because it has di�erent
meanings in di�erent contexts and can be confus-
ing. The prior is a distance-dependent Chinese
Restaurant Process, presented in Blei and Frazier
[4], and the posterior distribution is estimated by
sampling.

II. METHODS

1. Theory

We use all the usual assumptions of MLEM and
MAP (Poisson likelihood, introduction of complete
data, system matrix and additive contribution
of random and scattered counts). The novelties
consist of building a sampler for the full posterior
distribution, and of placing a distance-dependent
Chinese Restaurant Process (ddCRP) prior on the
image, [4]. This prior models a segmentation of the
image into groups of voxels (segments) which are
likely to have the same intensity, and includes a
prior on segment intensity (each segment having
uniform intensity). Observed information about
segment intensities comes only from PET data,
but observed information about local uniformities
can be supplied by as many sources as available.
Anatomical (MRI) data are therefore used to pro-
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vide more side information about segmentation
probabilities.
Let yi be the observed number of counts acquired

in the line of response (LOR) i, nij the complete
data (number of counts emitted in voxel j and
detected in LOR i), Aij elements of the system
matrix, λs the emission concentration [Bq/volume]
not per voxel but per uniform segment, and c
the segmentation of the image into groups of
voxels with the same emission concentration (im-
plemented through links between neighbouring vox-
els). The prior on segment intensity is chosen to
be a Gamma distribution, for several practical and
realistic reasons: the Gamma distribution has the
convenient property of being the conjugate prior for
Poisson distribution (the posterior distribution can
be easily expressed analytically), it is non negative
and very versatile (various emission distributions
as well as less informative distributions can be ap-
proximated by choosing appropriate parameters).
The PET image being thus modeled with both

intensity λ and segmentation c, the posterior dis-
tribution for our model is p(λ, c, n|y) and it is
estimated by sampling. We built a MCMC Gibbs
sampler, which requires the following conditional
probabilities:
1 - The complete data conditional probability

is derived directly from usual PET assumptions.
It is a multinomial distribution with yi trials,
the outcomes being the voxels and the additive
random/scatter signal qi. Outcome probabilities
are determined using the system matrix and the
random/scatter expectation q̄i, as :

Aijλj∑
k Aikλk + q̄i

,
q̄i∑

k Aikλk + q̄i
(1)

for voxels (left) and random/scatter contribution
(right).
2 - The ddCRP segmentation conditional prob-

ability is implemented with another Gibbs sam-
pler presented in [4]. The required conditional
probabilities are the probabilities for each voxel of
being linked to one of its neighbours, given the
current links of all the other voxels and given the
observed data. In this study, we used an MRI image
to provide information about uniform segments.
The MRI image is modeled rather simply, with a
Gaussian distribution and with additive Gaussian
noise.
3 - Segment intensity conditional probability is

a Gamma distribution expressed per segment s,
derived from Gamma-Poisson conjugate pair. Its
expectation is proportional to the ratio of the sum
of all nij for the segment and the sum of all voxel
sensitivities for the segment. The in�uence of the
Gamma segment intensity prior is rather explicit:

the parameters of the prior (shape parameter a
and rate parameter b) are added to the previously
described sums. Their in�uence decreases when
segment size or quantity of observations increase,
and their in�uence will be strongest for single voxel
segments with few observed counts.

p(λs|nj∈s) = Gamma(
∑
j∈s

∑
i

nij +a,
∑
j∈s

sensj +b)

(2)

There are several possibilities for choosing an
image estimator from a probability distribution.
In this study we focused on posterior expectation,
estimated by averaging the samples. The �nal
image represents therefore an average of likely
segmentations and likely segment intensities.

2. Implementation and validation

First, simulations were run in order to perform ex-
tensive quantitative tests. All the reconstructions
were implemented using the CASToR library in
C++, [1].

An MRI T1 brain image with associated label
image was generated from the BrainWeb database.
We used realistic FDG PET values for a healthy
brain to generate a PET image from the label
image. The MRI and the PET image were thus
perfectly registered, but some edges were slightly
blurred in the MRI image due to its realistic nature.
In order to further test edge mismatches, we added
a hyperintense lesion in the PET image but not
in the MRI. In-house analytical simulation library,
Stute et al. [9], was used to simulate 100 replicates
of realistic PET observations, with 5e6 prompts
(∼ 2.5e6 true counts) for a 2D slice and 7e7 prompts
for 3D data, using Siemens Biograph PET/CT
geometry, and including attenuation, random and
scatter counts, resolution modeling (PSF blurring),
etc. There was no PSF modeling in the reconstruc-
tions. Quantitative analysis on replicates was done
on 2D data because of the required computation
time, and 3D data were reconstructed with the
same parameters for a single replicate. The Gibbs
sampler was iterated 1000 times, but as it had
di�culties converging to the �nal distribution, we
ran it several times (here 35), and took the last 100
samples from each run.

Regarding the Gamma prior on segment inten-
sity, we tested several approaches for �xing the
shape and rate parameters : using an estimation
of intensity expectation from the observed data,
and using approximations of non-informative pri-
ors (uniform prior and Je�reys non-informative
prior for Poisson likelihood, Je�reys [6]). As the
results were rather similar for di�erent intensity
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priors, only the results with the approximate non-
informative Je�reys prior are presented.
The ddCRP contains an internal parameter

which a�ects to some extent segment sizes, [4]: it
was chosen empirically.
The performance and the characteristics of the

new reconstruction were analyzed using several
methods. The new image estimator (the pos-
terior mean) was compared with raw and post-
smoothed converged MLEM estimator in terms of
bias, variance and root mean square error over
100 replicates. MLEM post-smoothing was done
with a Gaussian �lter with FWHM equal to the
blurring of the PET acquisition system. As voxel-
wise analysis is rather di�cult because of high
noise and variance, especially in MLEM, regions of
interest were selected in the simulated true image
according to region uniformity, edges and type of
intensity (hyperintense lesion, hypointense cerebro-
spinal �uid (CSF) surrounded by gray matter,
portion of gray matter (GM)). 95% intervals were
computed both on voxel-wise distributions over
replicates for all estimators (approximation of con-
�dence intervals), and on the posterior distribution
obtained with the new method for each replicate
(credible intervals). Their coverage of the true
values was observed over brain voxels, as neither
method is capable of obtaining true zero values in
the background. It should be noted that these two
types of intervals do not have equivalent meanings,
and cannot be directly compared.
Second, patient 3D brain data were obtained

from a GE PET/MRI scanner, from an approved
research protocol EPIPED. The T1 3D MRI image
was resampled to match the voxel size of the
reconstructed PET image. Two values were chosen
for the transaxial size of reconstructed voxels,
2.3mm and 1mm, the �rst being suitable for MLEM
reconstruction without PSF modeling and without
TOF, and the second being too low. Algorithm
parameters for the new method were the same as for
the simulated data, except that the Gibbs sampler
was rerun 30 times with 250 iterations per run.

III. RESULTS

Simulated PET and MRI images are shown in
Fig.1, and reconstructed images (2D and the same
slice in 3D) are shown in Fig.2 for the proposed
method and for raw and post-smoothed converged
MLEM (all the PET images are scaled with the
same color map as the phantom in Fig.1).
In the new reconstruction, the edges are well

de�ned and overlap well with the edges in the true
image, which can be interpreted as an improvement
of spatial resolution. Some edges that do not
exist in the MRI image are less visible in the

Figure 1: Simulated MRI and PET images

Figure 2: Up: converged and post-smoothed MLEM
Down: new method 2D and 3D (same color
scale as phantom Fig.1)

reconstructed image, for instance the lower edge
of the lesion. Image areas that have uniform
intensity in the true image approach uniformity also
in the reconstructed image. Fig.3 shows identically
scaled images of absolute bias over replicates of
the new estimator and MLEM : it is clear that
the bias at the edges is lower with our method.
Considering the whole image, the new method
presents slightly lower bias and lower variance
compared to converged MLEM, and lower bias and
slightly lower variance compared to post-smoothed
MLEM. The new method reduces the root mean
square error computed over the whole image by
72% compared to converged MLEM.

Figure 3: Estimator bias for the new method (left)
and converged MLEM (right)
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Fig.4 presents bias-standard deviation plots for
the selected regions of interest, for the new method,
converged and post-smoothed MLEM. Lower and
upper limits of 95% intervals are also displayed. As
to the regions of interest, the new method presents
roughly similar bias and lower variance compared
to converged MLEM, and lower bias and similar
variance compared to post-smoothed MLEM. For
all methods, the hyperintense lesion and gray
matter are underestimated, and the hypointense
region surrounded by gray matter is overestimated.
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Figure 4: Estimator bias-standard deviation compari-
son for ROIs : lesion(◦), CSF(�), GM(∗)

Figure 5: Image of credible intervals

The posterior distribution per replicate presents
rather tight (credible) intervals, partly because
anatomical MRI information lowers the uncertainty
about the segmentation part of the model. Fig.5
shows an image of the absolute size (maximum -
minimum) of credible intervals for one replicate:
areas with larger intervals tend to match areas
in the reconstructed image where the intensities
di�er more from the true image. Estimator inter-
vals, computed over estimator distributions, had
a coverage of true values over brain voxels of
100% for converged MLEM, 82% for smoothed
MLEM, and 32% for the new method. Credible
intervals, computed per replica over the posterior
distribution obtained with the new method, had
a 60% coverage of true values over brain voxels,

in average over replicates. This lower coverage
is probably caused by the combined properties
of noteworthy bias and low variance of the new
method.
Regarding patient data, Fig.6 shows the MRI

image at smaller voxel size and the converged
post-smoothed MLEM reconstruction at larger
voxel size. Fig.7 shows reconstructions with the
new method, both the posterior mean image and
the credible intervals image, for smaller and larger
voxel size. The reconstructed images present
sharper edges and more details. The color scale is
identical for MLEM and the posterior mean image,
the unit being Bq/ml.

Figure 6: Patient MRI and post-smoothed MLEM

Figure 7: New method mean (up) and interval (down)
image at larger (left) and smaller (right)
voxel size

IV. DISCUSSION

The lack of system resolution modeling in the
reconstruction has probably slightly impaired the
e�ect of registration between the MRI and the
PET. PSF modeling will be introduced in a prob-
abilistic manner in the model. TOF management
will be implemented as well, as it is expected to
improve the results and to aid sampler convergence.
This feature will be especially useful for patient
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data, as TOF information is available for out
PET/MRI scanner.

The MRI image does not a�ect the PET image
intensity directly, it only in�uences the segmenta-
tion part of the model. It should be noted that
there is no �nal piece-wise segmentation of the
image: the segmentation occurs only in individual
samples of the posterior distribution. Regarding
potential detrimental in�uence of MRI on PET,
an issue may arise when a single MRI segment
encompasses several PET segments: especially if
these segments are small, slight averaging in the
PET image may occur, as may be observed in
the simulation (lesion). If several MRI segments
match a uniform PET region, the PET intensity
should not be impaired. In general, very small
segments with very few PET counts su�er from lack
of observation, hence they are more in�uenced by
the wide-range prior and more di�cult to sample.
A possible improvement regarding segmentation
could be a �ner, preferably automatic tuning of
the balance between MRI and PET in�uence on
the segmentation.

The Gibbs sampler had convergence di�culties
and several runs were needed, but this issue is
being investigated. Whenever a prior is introduced
in a model, its characteristics and parameters
need to be chosen with care and with reality in
mind. In our prior, the in�uence of the intensity
prior parameters was rather small compared to the
in�uence of the segmentation part of the model.
It should be noted that deterministic methods for
solving inverse problem, such as MLEM, might
also be viewed as probabilistic methods with non-
informative priors.

The posterior distribution reveals uncertainty
information from several sources: from the prior
distribution of intensity and segmentation, from
intensity observations from PET data and from
segmentation observations from both PET and
MRI data, so the intepretation of credible intervals
is not straightforward.

Further tests shall be performed for re�ning and
automating the choice of parameters, and for a
more thorough interpretation of uncertainty.

In conclusion, we proposed a new method for
PET image and uncertainty reconstruction includ-
ing anatomical information. The preliminary re-
sults are promising, so further tests are being per-
formed and improvements are being investigated.
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