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Abstract—Theoretically two materials with different linear
attenuation coefficients can be accurately reconstructed using
dual-energy CT (DECT) technique. However, the ability to recon-
struct three or more basis materials is clinically and industrially
important. We propose a new image-domain multi-material
decomposition (MMD) method using DECT measurements. The
proposed PWLS-TNV-`0 method uses penalized weighted least-
square (PWLS) reconstruction with three regularization terms.
The first term is a total nuclear norm (TNV) that accounts for
the image property that basis material images share common or
complementary boundaries and each material image is piecewise
constant. The second term is a `0 norm that encourages each
pixel containing a small subset of material types out of several
possible materials. The third term is a characteristic function
based on sum-to-one and box constraint derived from the volume
and mass conservation assumption. We apply an Alternating
Direction Method of Multipliers (ADMM) to optimize the cost
function of the PWLS-TNV-`0 method. Our results on simulated
digital phantom and clinical data indicate that the proposed
PWLS-TNV-`0 method reduces noise and improves accuracy of
decomposed material images, compared to a recently proposed
image-domain MMD method for DECT.

I. INTRODUCTION

Dual energy CT (DECT) enhances tissue characterization
because it can produce images that separate materials such as
soft-tissue and bone. DECT is of great interest in applications
to medical imaging, security inspection and nondestructive
testing. In principle, only two basis materials can be accurately
reconstructed from DECT measurements that acquired at low
and high energies. In reality a scanned object often contains
multiple basis materials. Many clinical and industrial applica-
tions require multi-material images. Spectral CT that acquires
multi-energy measurements can be used to achieve multiple
basis material images. However, spectral CT requires multiple
scans at different energies or expensive specialized scanners,
such as energy-sensitive photon-counting detectors. We focus
on reconstructing multiple basis material images using DECT
measurements available from conventional DECT scanners.
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Mendonca et al. [1] proposed an image-domain method
that decomposes FBP images at low- and high- energy re-
constructed from a DECT scan into multiple images of basis
materials. It uses mass and volume conservation assumption,
and a constraint that each pixel contains at most three mate-
rials out of several possible materials to help solve the ill-
posed problem of estimating multiple images from DECT
measurements. This method estimates volume fractions of
basis materials from linear attenuation coefficients (LAC) pairs
at high and low energies pixel by pixel without considering
noise statistics and prior information of material images, such
as piecewise constant property of material images. Long and
Fessler [2] proposed a penalized-likelihood (PL) method with
edge-preserving regularizers for each material using similar
constraints for MMD from sinogram DECT data. This PL
method greatly reduced noise, streak and cross-talk artifacts
in the reconstructed basis material images. However, this
PL method is computationally expensive mainly due to the
forward and back-projection between multiple material images
and DECT sinograms at low and high energies. Yang et al.
[3] proposed a statistical image-domain MMD method that
uses penalized weighted least-square (PWLS) reconstruction
with edge-preserving (EP) regularizers for each material. This
method suppresses noise and improves the accuracy of decom-
posed volume fractions, compared to the method in [1]. It is
computationally more practical than the PL method because
it is an image-domain method. The aforementioned three
methods loop over material triples from several basis materials
of interest, enforce sum-to-one and a box constraint ([0 1]) de-
rived from both the volume and mass conservation assumption
[2], and require a criterion to determine the optimal material
triplet for each pixel. The edge-preserving regularization for
each material does not consider the prior information that
different material images have common edges. We call the
method in [3] the PWLS-EP-LOOP method hereafter.

In this paper we propose a PWLS-TNV-`0 method that
uses PWLS reconstruction with three regularization terms. The
first term is a total nuclear norm (TNV) that accounts for
image property that basis material images share common or
complementary boundaries and each material image is piece-
wise constant. The second term is a `0 norm that encourages
each pixel containing a small subset of material types out of
several possible materials. The third term is a characteristic
function based on sum-to-one and a box constraint derived
from the volume and mass conservation. We solve the op-
timization problem of the PWLS-TNV-`0 method using the
Alternating Direction Method of Multipliers (ADMM, also
known as split Bregman method [4]) and its unconstrained sub-
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problems using Singular Value Thresholding (SVT) [5] and
Hard Thresholding (HT) [6], [7]. Our results on the simulated
digital phantom and clinical data indicate that the proposed
PWLS-TNV-`0 method reduces noise and improves accuracy
of decomposed material images, compared to the PWLS-EP-
LOOP method.

This paper is organized as follows. Section II describes
the PWLS-TNV-`0 method and the ADMM algorithm that
minimizes its cost function. Section III presents numerical
experiments and results. Finally, we draw our conclusions in
Section IV.

II. METHOD

A. DECT model
For dual energy CT, we can acquire a two-channel image

y = (yH ,yL)T ∈ R2×Np , where yH ,yL are the attenuation
maps at high and low energy respectively and Np is the
number of pixels. The attenuation images y are represented by
a linear combination of L0 images, where L0 is the number
of materials. Let x ∈ RL0×NP denote the L0 images to be
reconstructed

x =
(
xT1 ,x

T
2 , · · · ,xTL0

)
,

and xl = (xl1, xl2, ..., xln, ..., xlNp) ∈ RNp denotes the
composition of the l-th materials. Then,

y =

(
AHx
ALx

)
=

(
µ1H , µ2H , · · · , µL0H

µ1L, µ2L, · · · , µL0L

) x1

...
xL0

 ,

where µlH and µlL denote the linear attenuation coefficient of
the l-th material at the high and low energy respectively and
A ∈ R2×L0 is the system matrix,

A =

(
AH

AL

)
=

(
µ1H µ2H · · ·µL0H

µ1L µ2L · · ·µL0L

)
.

In practice the system matrix A can be measured in advance,
and the acquired attenuation image y is degraded with noise
ε as

y = Ax+ ε. (1)

B. Variational model
In (1), the noise is assumed to be additive white noise,

with mean 0 and variance σH ,σL for high- and low-energy
image respectively. The weighted least square of low- and
high-energy is used as the data fidelity term:

L̄(x) =
1

2
‖yH −AHx

σH
‖22 +

1

2
‖yL −ALx

σL
‖22. (2)

The volume fractions x is estimated from the noisy mea-
surements yH ,yL by minimizing a penalized weighted least
square (PWLS) cost function as follows:

x̂ = argminx,Ψ(x) Ψ(x) , L̄(x) +R(x). (3)

We propose to use the following regularization term R(x)

R(x) = β1R1(x) + β2R2(x) +R3(x). (4)

where the three regularization terms will be explained in the
following, and the parameters β1 and β2 control the noise and
resolution tradeoff.

1) Low rank of image gradient: The first regularization
term R1(x) is imposed for the correlation of the composition
maps of all the materials. In fact, each region of an object
typically contains several materials, and the material images
will share the similar boundary structures. The boundary of
the objects can be represented by the gradient map of image,
and the correlation can be represented by the low rankness of
the gradient matrix stacked from all the material images. At
each pixel 1 ≤ j ≤ Np, the generalized gradient matrix for
all the materials (Dx)j ∈ RL0×Nd is computed by the finite
difference along Nd directions,

(Dx)j =

 (J1x1)j (J2x1)j · · · (JNdx1)j
...

...
. . .

...
(J1xL0)j (J2xL0)j · · · (JNdxL0)j


where Jdxl, for 1 ≤ d ≤ Nd and 1 ≤ l ≤ L0 denotes the
finite difference in the d-th direction on the image xl. As the
boundaries are correlated, we penalize the following term

R1(x) =

NP∑
j=1

‖(Dx)j‖∗ , ‖Dx‖∗ , RTNV (x), (5)

where the overall matrix Dx can be also viewed as a
3D matrix with size L0 × Nd × Np. In fact, R1(x)
was proposed as a multi-channel regularization based on
total nuclear variation (TNV) of Jacobian matrix J in [8].

2) Sparsity: It is assumed that each pixel of y only contains
a subset of materials rather than all the materials. If the l-th
material is not included in pixel j, the fraction xlj must be 0.
Therefore, it is natural to use the `0 norm, ‖x(:, j)‖0, at each
pixel, i.e.,

R2(x) =

NP∑
j=1

‖x(:, j)‖0 = ‖x‖0. (6)

3) Volume and mass conservation: Both volume and mass
are assumed to be conserved for the volume fraction xlj at
each pixel j. Thus the third constraint is imposed as

L0∑
l=1

xlj = 1, alj ≤ xlj ≤ clj , l = 1 · · ·L0. (7)

Here, alj = 0, clj = 1. The regularization term R3 is taken
as the characteristic function of S:

R3(x) = χS(x) =

{
0, x ∈ S
∞, else,

(8)

where S = {x :
L0∑
l=1

xlj = 1, 0 ≤ xlj ≤ 1, j = 1, · · · , Np}.

C. Optimization Method
1) Equivalent Model: Because (3) is hard to solve directly,

we introduce auxiliary variables u ∈ RL0×Nd×Np ,v ∈
RL0×Np ,w ∈ RL0×Np . Then, our problem can be written
as the following equivalent constrained problem:

argminx,u,v,w

1

2
‖yH −AHx

σH
‖22 +

1

2
‖yL −ALx

σL
‖22

+ β1‖u‖∗ + β2‖v‖0 + χS(w)

s.t.u = Dx,v = x,w = x. (9)
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Rewrite (9) as

argminx,z L̄(x) +R(z) s.t. z = Kx (10)

where z , (u,v,w)T ,K , (D, I, I)T .
2) Alternating Direction Method of Multipliers: To solve

the optimization problem in (10), the algorithm Alternating
Direction Method of Multipliers (ADMM) (also know as split
Bregman [4]) is applied. Given x0, z0,p0, ADMM updates
the sequence xn, zn,pn by

xn+1 = argminx L̄(x) + 〈pn,Kx− zn〉

+
γ

2
‖Kx− zn‖22, (11)

zn+1 = argminz R(z) + 〈pn,Kxn+1 − z〉

+
γ

2
‖Kxn+1 − z‖22, (12)

pn+1 = pn + γ(Kxn+1 − zn+1), (13)

where γ > 0 is the penalty parameter and p = (p1,p2,p3)T ,
p1 ∈ RL0×Nd×Np ,p2 ∈ R2×Np ,p3 ∈ R2×Np have the same
size as Dx,x,x respectively. Note that we can also select
a vector γ = (γ1, γ2, γ3) for the three quadratic penalty
constraints.

3) Algorithm: Firstly, we solve (11) to obtain xn+1. Since
(11) is quadratic and differentiable on x, it is equal to solve
a linear system, i.e.

Gx =
1

σ2
H

AT
HyH +

1

σ2
L

AT
LyL +DT (γ1u

n − pn1 )

+ γ2v
n − pn2 + γ3w

n − pn3 , (14)

where G = 1
σ2
H
AT
HAH + 1

σ2
L
AT
LAL + γ1D

TD + γ2 + γ3,
whose is of dimension L0 × L0.

Due to the structure of R(z) and K, (12) can be solved
separately for u,v,w as follows:

un+1 = arg min
u
β1‖u‖∗ +

γ1
2
‖u−Dxn+1 − p

n
1

γ1
‖22, (15)

vn+1 = arg min
v
β2‖v‖0 +

γ2
2
‖v − xn+1 − p

n
2

γ2
‖22, (16)

wn+1 = arg min
w

χS(w) +
γ3
2
‖w − xn+1 − p

n
3

γ3
‖22. (17)

• We use Singular Value Thresholding [5] to solve (15).

un+1(:, :, j) = D β1
γ1

([Dxn+1 +
pn1
γ1

](:, :, j)), j = 1, · · · , Np

The singular value thresholding operator, D·(·), is the
proximal operator associated with the nuclear norm. For
τ ≥ 0 and Y ∈ Rn1×n2 , the singular value shrinkage
operator obeys

Dτ (Y ) = proxλ‖·‖∗(Y ) = argminX τ‖X‖∗+
1

2
‖X−Y ‖2F .

The singular value decomposition (SVD) of Y is

Y = UΣV ∗,

where U ∈ Rn1×r, V ∈ Rn2×r with orthonormal
columns, and Σ = diag({σi}1≤i≤r). We obtain

Dτ (Y ) := UDτ (Σ)V ∗, (18)

where Dτ (Σ) = diag({σi − τ}+), {t}+ = max(0, t).
• The closed-form solution for (16) is obtained by

vn+1 = H β2
γ2

(xn+1 +
pn2
γ2

), (19)

where H·(·) is the hard thresholding operator [6], [7]. For
nonnegative λ and vector x,

Hλ(x) = proxλ‖·‖0(x) = argminy λ‖y‖0 +
1

2
‖y − x‖22,

with

(Hλ(x))i =


xi if |xi| >

√
2λ,

{0, xi} if |xi| =
√

2λ,

0 if |xi| <
√

2λ.

• Subproblem (17) is the projection on to a simplex [9],
[10],

wn+1(:, j) = P1+([xn+1 +
pn3
γ3

](:, j)), j = 1, · · ·Np.

where P is a projection operator. For nonnegative λ and
vector x,

Pλ+(x) = proxλ‖·‖0(x) = argminy χS(y) +
1

2
‖y − x‖22,

where S = {x :
∑
i xi = λ, xi ≥ 0}. Specifically,

(Pλ+(x))i = {xi − t̂}+
where t̂ := 1

n−k (
∑n
j=k+1 x(j) − λ) with k := max{p :

x(p+1) ≥ 1
n−p (

∑n
j=p+1 x(j)−λ)} and x(1) ≤ · · · ≤ x(n)

is the permutation of x in ascending order.
Algorithm 1 summarizes the optimization algorithm of PWLS-
TNV-L0.

Algorithm 1 PWLS-TNV-`0
Input. β1, β2, yH , yL, A,γ
Initial p0 = (p01,p

0
2,p

0
3, )

T , u = Dx0,v = x0,w = x0

Maxiter, tol, n = 1
while error > tol,n < Maxiter do

Solve linear system (14) by CG.
un+1(:, j, :) = D β1

γ1

([Dxn+1 +
pn1
γ1

](:, j, :)), j = 1 · · ·Np

vn+1 = H β2
γ2

(xn+1 +
pn2
γ2

)

wn+1(:, j) = P1+([xn+1 +
pn3
γ3

](:, j)), i = 1, · · ·Np
Compute pn+1

1 ,pn+1
2 ,pn+1

3 base on (13)
n = n+ 1 and Compute error

end while

III. RESULTS

A. Digital phantom study

To evaluate the proposed PWLS-TNV-`0 method for MMD,
we simulated a DECT scan and reconstructed volume fractions
of a modified NCAT chest phantom [11] containing adipose,
blood, omnipaque300 (iodine-based contrast agent), cortical
bone and air. We compared the PWLS-TNV-`0 method with
the PWLS-EP-LOOP method [3].

Fig.1 (a) shows the true volume fractions of the simulat-
ed NCAT chest phantom. The simulated true images were
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1024 × 1024 and the pixel size was 0.49 mm. We generated
sinograms of size 888× 984 using GE LightSpeed X-ray CT
fan-beam system geometry corresponding to a mono-energetic
source at 70keV and 140keV with 1×105 incident photons per
ray without scatter. We used filtered back projection (FBP) to
reconstruct attenuation images of size 512×512 with a coarser
grid, where the pixel size was 0.98 mm. We implemented the
direct inversion MMD method in [1] and used its results as
the initialization for the PWLS-EP-LOOP [3] and the proposed
PWLS-TNV-`0 method.

Fig.1 (b) and (c) show the decomposed material images by
the PWLS-EP-LOOP and PWLS-TNV-`0 method respectively.
For the PWLS-TNV-`0 method, we set β1 = 3 and β2 = 10.
The regions of interest (ROI) in the blood and omnipaque300
component image were enlarged and shown at the lower left
corners of Fig.1 (b2, c2) and Fig.1 (b3, c3). The PWLS-
TNV-`0 method reduced noise, artifacts and crosstalk in the
component images, especially for the adipose, blood and bone
image, compared to the PWLS-EP-LOOP method.

Fig. 2: Profiles of Omnipaque300 images along the labeled
red line shown in Fig.1 (a3)

We calculated the Root Mean Square Error (RMSE) and
SSIM of the decomposed material images. The RMSE is de-
fined as

√
1
Np

∑Np
j=1(x̂lj − xlj) where xlj denotes the down-

sampled true volume fraction of the l-th material at the j-
th pixel location. Table I shows the RMSE and SSIM of
component images reconstructed by the PWLS-EP-LOOP and
PWLS-TNV-`0 method. Comparing with the PWLS-EP-LOOP
method, the PWLS-TNV-`0 method lowered the RMSE of
adipose, blood, bone component, had similar RMSE for air,
and increased RMSE for omnipaque300. In fact, the ROI
of Omnipaque300 image is a small region. The structures
with very small values outside of ROI lead larger RMSE by
our method than RMSE by PWLS-EP-LOOP. Fig.2 shows
the profiles of the omnipaque300 images along the red line
shown in Fig.1 (a3). PWLS-TNV-`0 preserves edges more
accurately than PWLS-EP-LOOP. The RMSE within the ROI
is 30.2×10−3 and 41.9×10−3 for PWLS-TNV-`0 and PWLS-
EP-LOOP respectively.

Method PWLS-EP-LOOP PWLS-TNV-`0
RMSE SSIM RMSE SSIM

Adipose 60.3 0.959 41.8 0.982
Blood 49.0 0.826 19.4 0.968

Omnipaque300 1.3 0.999 2.5 0.992
Bone 28.9 0.959 27.8 0.969
Air 23.5 0.957 23.6 0.967

Total 163.0 ∼ 115.1 ∼

TABLE I: Root mean square error (RMSE) error and SSIM of
material images reconstructed by different methods. The unit
of RMSE is 10−3.

B. Patient Study

The proposed PWLS-TNV-`0 method is also evaluated
using clinical data. The CT images of head patient are shown
in Fig. 3.

The bone, iodine, muscle, fat and air were selected as the
basis materials. We implemented the direct inversion MMD
method in [1] and used its results as the initialization for
the PWLS-EP-LOOP [3] and the proposed PWLS-TNV-`0
method. Fig.4 (a), (b) and (c) show the decomposed material
images by the direct inversion, PWLS-EP-LOOP and PWLS-
TNV-`0 method respectively. For the PWLS-TNV-`0 method,
we set β1 = 1 and β2 = 10. The proposed PWLS-TNV-
`0 method decomposes basis material images more accurate-
ly, and decreases crosstalk, especially for the iodine image,
compared to the direction inversion method and the PWLS-
EP-LOOP method. The PWLS-TNV-`0 suppresses noise while
retaining spatial resolution of the decomposed images.

IV. DISCUSSION AND CONCLUSION

We proposed an image-domain MMD method, PWLS-TNV-
`0, using DECT measurements. PWLS-TNV-`0 method takes
low rank property of material image gradient, sparsity of
material composition and mass and volume conservation into
consideration. We minimize the cost function using ADMM
which divides the original optimization problem into several
subproblems that are easier to solve. The results on simulated
phantom and clinical data show that PWLS-TNV-`0 reduces
noise and crosstalk, compared to PWLS-EP-LOOP. We will
investigate acceleration methods to speed up the SVD opera-
tion for every pixel in each iteration. PWLS-TNV-`0 method
requires to tune two regularization parameters and several oth-
er parameters when optimizing its cost function using ADMM.
Future work will discuss how to chose these parameters. The
PWLS-TNV-`0 model assumes the noise variance is uniformly
distributed, and estimates it using the measurement inside a
manually selected region of homogeneous material [3]. We
will investigate estimating noise variance map from projection
data [12].
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