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Abstract—In computed tomography (CT), the polychromatic 

characteristics of x-ray photons emitting from source and 

absorbed by detector lead to beam-hardening effects in signal 

detection and image formation, especially in situations where a 

highly attenuating object (e.g., bone or metal in-plant) is in x-ray 

beam. Usually, the method called bone bam-hardening correction 

is employed to suppress the beam-hardening effects, in which 

either a scaling factor or a vector needs to be pre-determined via 

tedious physical experiments. Based on the Helgasson-Ludwig 

consistency condition (HLCC), a data consistency condition based 

beam-hardening correction has been proposed to avoid such a 

tedious parameter determination. However, the HLCC requires 

the involvement of neighboring projection views acquired at a 

relatively uniform and sufficient sampling rate, which hinders its 

application in the case wherein the sampling in view is sparse. 

Having recognized the flexibility of data integral invariant (DII), 

we extend the HLCC-based method by proposing a DII based 

objective function in this work. Using computer-simulated 

projection data, we carry out a simulation study to demonstrate 

that the process of parameter optimization and performance of 

the proposed beam-hardening correction method. 

Index Terms—CT, Beam-hardening, Consistency Condition, 

Integral Invariant 

I. INTRODUCTION 

In x-ray computed tomography (XCT), the polychromatic 

characteristics of x-ray photons emitting from source and 

absorbed by detector leads to beam-hardening effects in the 

formation of projection data1-7, resulting in severe artifacts (e.g., 

cupping and/or streak) in reconstructed CT images1-4.  

Beam-hardening artifact and its correction have been 

investigated since the birth of XCT, which has up to date is still 

an active research topic. For example, empirical cupping 

correction (ECC) was proposed for suppressing cupping 

artifacts20, in which a polynomial was used to approximate the 

beam-hardening effects in homogeneous object such as water 

or soft tissues. Later, an empirical beam-hardening correction 

(EBHC) method was proposed to deal with the streak artifacts 
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caused by bony structures21. Among all existing methods, the 

water1-2 and bone corrections3-4 are still the most frequently 

used ones in XCT for preclinical and clinical applications. 

Nevertheless, it is still very hard to effectively carry out a 

bone-correction over situations where a variety of objects are 

being imaged3-4. 

In this work, we propose a method based on data consistency 

condition to determine an optimal scaling factor or vector for 

bone-correction. Both the HLCC8-14 and data integral invariant 

(DII)15 can be viewed as data consistency condition possessing 

different characteristics. Lots of researches has been carried out 

based on the HLCC8-14, 29, but, as a consistency condition for 

complete projection data, the HLCC requires the involvement 

of neighboring projection views acquired at uniform and 

relatively high sampling rate in view angle, whereas the DII 

only needs the involvement of a pair of projection views15, 28. 

Hence, a new object function based on the DII is introduced in 

this work to make bone-correction more applicable and robust 

over situations in x-ray CT imaging. 

II. THEOREM BACKGROUND 

A. X-ray Imaging Model 

Let f(x, y)C∞ be an object function with a compact support 

in the 2-D real space denoted as o-xy in Fig. 1. In the 

equi-angular fan-beam geometry, the ideal projection (i.e., 

monochromatic projection) of f(x, y) is denoted as g(β, γ) over 

domain {(β, γ) | β[0, 2π), γ[γmin, γmax]}, wherein γ and β are 

the x-ray’s fan-angle and view-angle, respectively. 

Let S(ε) be the source spectrum, which represents the number 

of photons in range ε[εmin, εmax], while Q(ε) be the absorption 

spectrum of x-ray detector as a photon of energy ε[εmin, εmax] 

passes through the detector. εmin and εmax are the minimal and 

maximal photon energies, over which the x-ray detector is 

assumed working at energy integration mode in this work. 

The formation of a monochromatic x-ray image at a specific 

energy εmono[εmin, εmax] can be mathematically modeled as 
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where μ and ρ represent the mass attenuation coefficient and 

mass density, and L denotes the integral line corresponding to 

the x-ray path. For monochromatic imaging, we usually define 

f(x, y) = μ(x, y, εmono)ρ(x, y). It is straightforward to understand 

that the consistency condition holds in projection gmono, as it is 

the ideal projection of image function f(x, y). In reality, 

however, an x-ray source emits polychromatic photons and thus 

the imaging process can only be mathematically modeled as 
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In polychromatic XCT imaging, we can still define f(x, y) = μ(x, 

y, εmono)ρ(x, y), but the consistency condition does not hold in g 

any more. 

B. Water-/Bone-corrections

If a CT image is reconstructed from the polychromatic 

projection data g, artifacts arise and may degrade diagnostic 

accuracy and confidence. Thus, it is important to correct 

beam-hardening effects before image reconstruction. 

If the object to be imaged is water-like in its x-ray attenuation 

characteristic, cupping artifact appears in reconstructed image. 

The water beam-hardening correction via a polynomial 

mapping is generally used to suppress the cupping artifact5-6,  in 

which there are two separate phases5-6. In the first phase, 

water-effective material slabs at different thicknesses are used 

to acquire polychromatic projections, and a correction 

polynomial is determined through least square, 
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In the second phase, using the polynomial coefficients {an}, the 

polychromatic projection g acquired in the scan is mapped into 

Pw(g) to approximate a monochromatic projection gmono. Note 

that the performance of water beam-hardening correction 

depends on the extent to which the object is water-like. Since 

no spectral information is explicitly required, such a water 

beam-hardening correction is intrinsically a calibration process. 

If both bone and soft tissues exist, streaks artifact may appear 

due to difference in their attenuation characteristics. In this 

situation, bone beam-hardening correction is usually used to 

suppress the cupping and streak artifacts simultaneously3-4, in 

which the polychromatic projection g is converted into Pw(g) 

via water beam-hardening correction. After reconstructed from 

the corrected projection Pw(g), image fw is segmented into an 

image consisting of soft tissues only 
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and an image consisting of bone only 

 
 

   

0, , ,
,

, , , ,

w

b

w w

f x y T
f x y

f x y f x y T


 


(5) 

by an empirically determined threshold T. Then, by re- 

projecting the images fs, fb and fw, one gets 
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Finally, the polychromatic projection g is corrected to 

approximate the ideal projection gmono as, 
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In eq. (9), λ0 is a scaling factor to adjust the ratio of the 

reconstructed value in bone image to the mass density of bone 

and is empirically determined by experiments3-4. μs and μb

represent the mass attenuation coefficients of ideal soft and 

bone tissues, respectively. Note that, the explicit spectra 

information is only required in the third term on the right-hand 

side of eq. (9). Generally, the spectral information is either 

supplied by a CT manufacturer or estimated by experimental 

approach based on, e.g., transmission attenuation experiment. 

C. Data Integral Invariant

To determine an optimal scaling factor λ0 for eq. (9) or its 

corresponding vector c described below, we propose a method 

based on the DII15, 28 in this section. 

Suppose that there are two projection views indexed by 

subscripts i = 1, 2, in which γi and βi are the fan-angle of an 

x-ray and view-angle of the projection view where the x-ray

located in. ξi(βi) and oi are respectively the ith x-ray source

position and detector center location, while g(βi, γi) is the ideal

projection of the object penetrated by the x-ray from the ith

source position on the ith detector, and ri = ║ξi(βi)-o║, Di =

║ξi(βi)-oi║. As r = ri and D = Di, i = 1, 2, there exist a data

integral invariant (DII) condition15, 28,
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where Δβ = β2-β1. Note that the HLCC requires a combination 

of information from neighboring projection views, but the DII 

relates to a pair of projection views only. This is the underlying 

reason that we introduce the DII-based method in this paper. 
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Fig. 1. Illustration of data integral invariant in a pair of projection views. 

D. Proposed Method 

To demonstrate the principle of proposed method, here we 

only consider the equi-angular fan-beam geometry and a 

circular trajectory, in which r = ri, D = Di, and i = 1, 2 as in eq. 

(10). In order to correct for beam-hardening effects, by 

combining the water and bone beam-hardening corrections and 

DII, we propose the following objective function and its 

minimization to determine an optimal scaling factor λ0 
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Note that the integrand is actually eq. (10). 

Unfortunately, in practice it is not easy to exactly determine 

the spectra S(ε) and Q(ε). Then, a polynomial approximation 

with respect to variables gs and gb need to be carried out, 
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, 1,2, i ig c              (12) 

where gi = [gs gb gs
2 gb

2 gsgb gb
0.5]i and depends on the x-ray path 

(βi, γ) and c = [c1 c2 c3 c4 c5 c6] is the coefficient vector. The 

objective function Φ0(λ0) can be further simplified into 
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The scaling factor λ0 and its corresponding vector c can then 

be determined by minimizing the objective functions Φ0(λ0) and 

Φ1(c) via least square (namely Φ0(λ0) and Φ1(c) methods). 

E. Numerical Implementation 

To numerically implement the minimization of the 

aforementioned objective functions, we re-express the 

objective function Φ0(λ0) as29 
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, the subscript j is the 

index of the combination of view angles β1 and β2, and max j 

can be determined by eq. (11). Because ϕj(λ0) is a nonlinear 

function of the variable λ0, a nonlinear least-square method is 

required to minimize Φ0(λ0) as follows: 
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is the 

thk step of approximation for the minimum value 

point of Φ0(λ0). The iteration process will be terminated as soon 

as certain stopping criteria are satisfied. Here, a maximal 

iteration number max k is used as the stopping criterion. Finally, 

the determined 
max

0
k

 is substituted into the following 

bone-correction formula for beam-hardening correction, 
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Similarly, the objective function Φ1(c) is re-expressed as29 
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where      
1 2

0 0

    j c c c , and maxj can be 

determined by eq. (13). Because ϕj(c) is a linear function of the 

variable c, a linear least-square method can be adopted to 

minimize Φ1(c) as follows: 
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Finally, the determined c
1 is adopted for beam-hardening 

correction as follows: 

   1ˆ ,


   w wg P g g g c (24) 

where g = [gs gb gs
2 gb

2 gsgb gb
0.5].

III. EXPERIMENTAL EVALUATION

The projection data of FORBILD head phantom simulated 

by computer are used to assess the capability and performance 

of the proposed methods7, 17. 

(a) 

(b) 

Fig. 2. (a) Emitting spectrums of an x-ray source with 120 kVp tube potential 

and (b) Absorption spectrum of CsI x-ray detector. 

The circular scanning trajectory is of radius r = 541mm. An 

equi-angular detector is positioned opposite to the x-ray source 

about the origin o. The arced detector array consists of 888 cells 

with a fan-angle of 54.89º. 1,160 projections are uniformly 

acquired in a full scan. Reconstructed images are in 1,024
1,024 matrices with 0.2344  0.2344mm2 pixel size. The

emitting spectrum of x-ray source18 S(ε) is shown in Fig. 2(a), 

while the absorption spectrum of a CsI detector19 Q(ε) is shown 

in Fig. 2(b), wherein the energy sampling interval is 1 keV. 

We assume that there is no Compton scatter involved in data 

acquisition, as it is removed or almost removed by the device 

called anti-scatter grid in clinical CT. The tube potential is 120 

kVp, while, a monochromatic case of 55 keV is simulated to 

serve as benchmark. Noise is simulated by assuming 3×105 

photons for each x-ray using the noise model7, 
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where P represents generation of a random number observing 

the Poisson distribution. The addition of noise is to evaluate the 

stability in objective function minimization, rather than the 

performance of image reconstruction algorithm. 

IV. EXPERIMENTAL RESULTS

The FBP algorithm is used in this work for image 

reconstruction, though iterative algorithm can also be used. Fig. 

3 shows the images reconstructed from the monochromatic/ 

polychromatic projection data with/without noise. From the 

polychromatic images in Fig. 3(b-b') and the difference images 

in Fig. 3(c-c'), it is observed that there are cupping and severe 

streak artifacts. Then, we studied the convergence of Φ0(λ0) 

method. To minimize the objective function Φ0(λ0), we set 

kmax=10 based on experiments. According to physical meaning 

of the scaling factor 3-4, we assume λ0>1 and thus 1.0 is chosen

as a reasonable initial value of λ0. As shown in Fig. 4, the 

minimization process converges quickly after about 4 iterations, 

indicating a very fast and stable convergence. 

The performance of beam-hardening correction is assessed 

by comparing the reconstructed polychromatic images 

with/without beam-hardening correction. Presented in Fig. 5 

are the images reconstructed from the noise-free polychromatic 

projection data, along with the difference images between the 

corrected and uncorrected results. The results in Fig. 5 show 

that both existing water beam-hardening correction method and 

the proposed algorithm are effective in suppressing cupping 

artifacts. However, there exist streak artifacts in the image with 

water beam-hardening correction only (see Fig. 5(a) and (a') 

and their comparison with Fig. 3(c). As shown in Fig. 5(b-b') 

and (c-c'), the proposed Φ0(λ0) and Φ1(c) methods outperform 

the water beam-hardening correction in suppression of streak 

artifact (comparing Fig. 5(b) and (c) with Fig. 3(c)). 

Shown in Fig. 6 are the images reconstructed from noisy 

polychromatic data, along with the corresponding difference 

images. The performance of beam-hardening correction in Fig. 

6 is similar to that in Fig. 5, demonstrating robustness of the 

proposed methods over noise. 

V. DISCUSSIONS AND CONCLUSIONS

In this work, we proposed a novel bone beam-hardening 

correction algorithm and carried out a performance evaluation. 

Different from the HLCC-based method, which requires 

involvement of neighboring projection views, the proposed 

method is more applicable in practice because it only requires 

that a pair of projection views be available. It is worthwhile 

noting that the proposed method can also be carried out in 
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cone-beam CT, C-arm CT and helical/spiral CT, as long as eq. 

(10) is adequately extended to the corresponding geometry. 

 
(a)        (b)        (c) 

 
(a')       (b')       (c') 

Fig. 3. Images reconstructed from computer-simulated projection data. 1st and 

2nd rows are noise-free and noisy images. Left, middle and right columns 

correspond to monochromatic (55 keV), polychromatic (120 kVp), and their 

difference (display window [-100 100] HU). 

  
(a) 

 
(b) 

Fig. 4. Convergence curves of (a) objective function Φ0(λ0
k) and (b) scaling 

factor λ0
k with respect to iteration number k.  

 
(a)        (b)        (c) 

 
(a')       (b')       (c') 

Fig. 5. Images reconstructed from noise-free polychromatic data: (a) With 

water beam-hardening correction only, (b) and (c) with the Φ1(c) and Φ0(λ0) 

methods. (a', b', c') are the difference between Fig. 5(a), (b) and (c) and the 

uncorrected result (Fig. 3 (b)) (display window [-100 100] HU). 

 
(a)        (b)        (c) 

 
(a')       (b')       (c') 

Fig. 6. Images reconstructed from noisy polychromatic data in layout the same 

as Fig. 5. 
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