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Abstract—Data degradations including quantum noise, beam
hardening and scatter remain a major issue in preclinical/clinical
applications, despite the recent advances in x-ray computed
tomography. Substantial efforts have been devoted to address
individual degradations, however, little attention has been paid
to minimize the adverse effects in a unified fashion. In this paper,
we combine image reconstruction and artifact reduction in a
physics-based synergistic framework. Simulation results showed
that less than 10 HU error could be achieved with the proposed
framework. Real data experiments showed that the corrected
reconstructions with the proposed method exhibited comparable
CT values and noise levels as the associated planning CT images.

Index Terms—Reconstruction, cone beam CT, noise, beam
hardening, scatter

I. INTRODUCTION

THE urgent demands of accurate non-destructive sensing
on the interior structures of the object have inspired a

 

rapid technical development of x-ray computed tomography 
in the last decades which has been applied in a wide array of 
scenarios, such as industrial non-destructive detection, medical 
diagnostic imaging, image guided radiation therapy/surgery 
and preclinical small animal imaging. Despite the significant 
progress made both in the aspects of hardware and algorithm, 
there still exist substantial flaws h e avily i m pairing t h e recon-
struction qualities stemmed from various data degradations 
including quantum noise, beam hardening, scatter and so on.

Owing to the inherent stochastic properties of the photon-
material interactions, quantum noise in the projection data is 
inevitable. It would be magnified and propagated t o the recon-
structed images resulting in streak artifacts and/or reducing 
the low contrast tissue detectability. Substantial efforts have 
been devoted to the noise reduction. They basically could 
be divided into two categories: pre/post-processing method-
s and model-based iterative methods. A major strategy of 
the pre/post-processing methods is applying a sophisticated 
linear or nonlinear filter d i rectly o n t h e p r ojection data/
the reconstructed image to weaken the noise[1]. Model-
based iterative algorithms formulate the reconstruction 
tasks into optimization problems by considering the noise’s 
stochastic properties and/or incorporating certain physical 
constraints[2]. Either Poisson distribution of the raw data 
before log or Gaussian distribution of the line integral data 
after log are widely adopted[1], [2]. As for the physical 
constraints, s-parsity promotion regularizers, such as total 
variation(TV) minimization[3] and dictionary learning(DL) 
based sparse representation[4], are popular availing from the 
compressive sensing techniques.

Rising from the inherent polychromaticity of the x-ray 
source spectrum, beam hardening effects may potentially lead
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to cupping artifacts and dark streak artifacts, rendering the
images difficult to be used. An ensemble of studies have been
carried out to alleviate this problem, for example, the classical
correction method that combines water correction[5] and bone
correction[6] together has been used in the commercial x-ray
CT systems. A statistical polyenergetic reconstruction frame-
work was also proposed and showed a promising reduction of
the beam hardening artifacts[2].

Scatter effects are heavily pronounced when large area
detector array presents in an x-ray system, causing contrast
loss and severe distortions, such as cupping artifacts, dark
streak artifacts and etc[7]. A variety of methods have been
devised in literature to enhance the image qualities, such
as the hardware-based methods including air-gap, anti-scatter
grid, beam stop array, primary modulation[8] and so on. An
alternative approach is the software-based method which firstly
mathematically estimates the scatter in the projection or image
domain[9], and then performs the correction step. The scatter
components could be estimated with the Monte Carlo(MC)
technique by accurately simulating the photon transportation
process[10] or the analytic technique based on a convolution
kernel[11]. With the assumption that the attenuation coef-
ficients of the human tissues are known to be relatively
stable and uniform, the scatter components could also be
estimated iteratively in the image domain[9] or analytically
in the projection domain[11].

Many techniques have been proposed in literature to al-
leviate the above mentioned individual degradation factor.
However, to our best knowledge, little attention has been paid
to approaching a unified reconstruction framework in terms
of that correcting all of these degradation factors in an one-
time work. In this study, we attempt to devise such a unified
reconstruction framework, where the scatter components could
be calculated iteratively while updating the reconstructed im-
ages. The relevant theories and the experimental results will be
presented in sec. (II) and sec. (III), respectively. In sec. (IV),
we will discuss and conclude the whole study.

II. METHODS AND MATERIALS

A. Formulation

In this section, we would first introduce the notations.
Generally speaking, our task is to calculate the underlying
density volume ρ and the associated scatter component s
simultaneously, provided the raw measurements Y and that
the x-ray spectrum is known. The maximum a posteriori
estimation could be formulated as:

P (ρ, s|Y ) =
P (Y |ρ, s)P (ρ, s)

P (Y )

=

∏
i P (Yi|ρ, s)P (ρ)P (s)

P (Y )
, (1)

where Yi denotes the real measurement of the ith ray. Here
we assume that the measurements among different detectors
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are independent[2]. And it is also supposed that the density
volume ρ and the scatter component s are independent with
each other.

Then the associated cost function could be achieved by
performing negative log operation on Eq. (1) as:

L(ρ, s) = −
∑
i

logP (Yi|ρ, s)−logP (ρ)−logP (s)+logP (Y ).

(2)
In this work, we adopt the Poisson model for the raw

measurements and also consider a broad spectrum for the
polyenergetic source[2], and hence we have:

P (Yi|ρ, s) =
Ȳi
Yie−Ȳi

Yi!
, (3)

where Ȳi =
∑
e Ii(e)exp(−

∑
k

∑
jmkj(e)ρj lij)+si denotes

the expected value of the ith detector. Ii(e) and si represent
the fluence of photon energy e and the detected scatter signal.
lij models the system matrix meaning the length of the
intersection between the ith ray and the jth voxel of the
reconstructed volume. Suppose that the reconstructed volume
could be classified into K types of materials. Then, the mass
attenuation coefficient of the jth voxel under energy e refers
to mkj(e) if it belongs to the kth type material.

Regarding the scatter component s which is known to
be dominated by the extremely low frequency components,
it is reasonable to assume that the associated gradient map
||Os||2 follows a general Gaussian distribution with precision
parameter λ and shape parameter p, i.e.,

P (s) ∝ e−λ||Os||
p
2 , (4)

where we define the square of the gradient at spatial location
(x, y, z) as:

(||Os||22)x,y,z = (sx,y,z − sx−1,y,z)
2

+ (sx,y,z − sx,y−1,z)
2

+ (sx,y,z − sx,y,z−1)2.

(5)

Suppose that βR(ρ) = −logP (ρ) represents certain kind
of physical constraint about the density volume, substituting
Eqs. (3) and (4) into Eq. (2) and ignoring the irrelevant
constant terms, we could express the final objective function
as:

Φ(ρ, s) = min
ρ,s

∑
i

(Ȳi − Yilog(Ȳi)) + λ||Os||p2 + βR(ρ). (6)

Note that when the scatter component s is omitted in
Eq. (6), the proposed unified reconstruction framework, will
be reduced to the classical polyenergetic reconstruction model.

B. Optimization algorithm

Basically, there exist two different quantum noise sources
in the measurements, i.e., either from the primary signal or
from the scatter. If the scatter background is first estimated
and then subtracted from the measurements, the resulted signal
will produce a noise-amplified reconstruction compared to the
uncorrected one. Therefore, a powerful prior information about

the reconstructed volume is required for noise suppression.
In the work, we adopt the 3D dictionary learning based
sparse representation technique as the regularizer[12]. Then
the proposed reconstruction framework could be formulated
as:

min
ρ,s,α

∑
i

(Ȳi − Yilog(Ȳi)) + λ||Os||22

+β
∑
t

(||Etρ−Dαt||22 + ν||αt||0), (7)

where Et denotes the extraction of the tth patch. α is the
sparse coefficient on the basis of dictionary D, ν is the parame-
ter balancing the sparse coding tolerance and the sparsity level
described by ||αt||0. In this work, the adopted distribution for
the scatter gradient map is Gaussian distribution, i.e., p = 2.

The optimization of Eq. (7) could be carried out alterna-
tively by splitting into the following three sub-problems:

min
ρ

∑
i

(Ȳi − Yilog(Ȳi)) + β
∑
t

||Etρ−Dαt||22, (8)

min
s

∑
i

(Ȳi − Yilog(Ȳi)) + λ||Os||22, (9)

min
α

∑
t

(||Etρ−Dαt||22 + ν||αt||0). (10)

The well-known separable paraboloidal surrogate(SPS) al-
gorithm could be employed to minimize sub-problems (8)
and (9). Sub-problem (10) is to find the sparse representation
which could be achieved with the orthogonal matching pursuit
algorithm.

C. Algorithm details

In this work, the reconstructed volume ρ is initialized with
the density volume with respect to its FDK reconstruction[13],
based on which, the sparse coefficients α are initialized with
the solution of sub-problem (10).

The scatter component could be initialized as follows. It is
reasonable to hypothesised that the majority of the densities
of the human soft tissues are relatively stable and uniform
in terms of that most of them are in the vicinity of water.
Therefore, provided the FDK result which is supposed to be
contaminated by various degradations including beam hard-
ening, scatter and noise, etc, then set all the density values
inside the object support to be 1.0g/cm3 corresponding to the
water density while keep the rest unchanged, a water surrogate
object could be digitally designed. And then, substituting the
above obtained object into sub-problem (9), the solution is
considered as the initialization of the scatter component s.

It is noted that problem (7) has multiple solutions, in
other words, the estimated scatter s and the reconstructed
density volume ρ are correlated with each other. Therefore,
a direct optimization of Eq. (7) would result in a scatter
component s highly resembling the above initialized one. In
order to alleviate this problem, a segmentation trick is required
when solving sub-problem (9). Specifically, to maximize the
difference between bone and soft tissue, the segmentation
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operation is performed based on the associated CT value map
which also considers the mass attenuation coefficients. In this
work, after we obtain the current reconstructed density volume
ρ, we will segment it according to a predefined curve as
indicated in Eq. (11). And then the segmented density map
would be fed into Eq. (9) to update the scatter component.
Note that 0.9g/cm3 and 1.05g/cm3 are the standard density
values of adipose and muscle according to National Insti-
tute of Standards and Technology (NIST)[14]. And we set
ρ = 1.0g/cm3 for those CT values ranging from -50 to 0 to
explain the uncertainty about the tissue categories.

f(ρ) =



ρ CT value < −500

0.9 −500 ≤ CT value < −50

1.0 −50 ≤ CT value < 0

1.05 0 ≤ CT value < 250

ρ 250 < CT value

(11)

D. Experiments

A digital water phantom was fed into the gDRR software
package[15] for the projections generation with the scatter
contaminated. As illustrated in Fig. (1), to simulate the high
attenuated objects, three cylinders with density of 1.35g/cm3

and one cylinder with density of 2.16g/cm3 are also inserted
into the lower-half part of the digital phantom. The radius
of the water insert and the four high attenuated cylinders are
10cm and 1.25cm, respectively. A typical system geometry
simulating the on board imager (OBI) mounted on a Varian
TrueBeam medical accelerator (Varian Medical System, Palo
Alto, CA) was employed, where the imager dimension is
512 × 384 with a resolution of 0.0776 × 0.0776cm2. The
distances from the source to the isocenter and to the detector
are 100cm and 150cm, respectively. For this digital phantom,
360 projections were generated with the full-fan mode in a
complete circle, the employed polyenergetic source spectrum
has a 100kVp. To collaborate the above simulated case, a
real data set containing 656 projections with respect to a
prostate patient was also collected with the above OBI in the
half-fan mode, i.e., having a 16cm lateral detector shift. The
reconstructed volumes are of dimension 512×512×448 with a
voxel size of 0.053cm3 and of dimension 512×512×256 with
a voxel size of 0.13cm3, corresponding to the digital phantom
and the prostate patient, respectively.

Once the FDK reconstruction is achieved, ρ, s and α will be
initialized as stated in sec. (II-C). For quantitative comparison,
the averaged CT value and the standard deviation(STD) will
be calculated based on selected region of interest (ROI).

III. RESULTS

Figure (2) shows the results of the digital phantom case.
Obvious cupping artifacts due to scatter and beam hardening
effects could be observed from Fig. (2)(a2), in addition,
one also could find the ring artifacts resulted from the high
scatter-primary-ratio (SPR) in the bow-tie filter shadow re-
gion. When there exist high attenuated objects along the
ray path, the artifacts would be more severe, as shown by

TABLE I
AVERAGED CT VALUES OF THE SELECTED SEVEN ROIS OF THE DIGITAL

PHANTOM CASE.(UNIT: HU)

ROI # 1 2 3 4 5 6 7
ground truth 0 0 0 2231 0 0 1016

before correction -29 -65 -39 1347 -132 -48 736
after correction -2 -3 -3 2072 -8 -4 959

TABLE II
ROI STATISTICS OF THE PROSTATE PATIENT CASE. THE NUMBERS INSIDE

THE PARENTHESES ARE THE STANDARD DEVIATIONS(UNIT: HU)

ROI # 1 2 3
planning CT 63(16) 43(17) -77(38)

before correction -77(35) -179(33) -230(38)
after correction 62(17) 48(17) -105(23)

the dark streak artifacts in Fig. (2)(b2). With the proposed
framework, the artifacts were dramatically alleviated, as shown
in Figs. (2)(a3) and (b3). Figures (2)(a4) and (b4) plot the
profiles in Figs. (2)(a1) and (b1). It can be found that after
correction, the profiles consistently match the ground truth
well. To quantitatively evaluate the proposed framework, seven
ROIs were selected for the CT value accuracy evaluation, as
shown in Fig. (2), whose values were tabulated in Table (I).
It was shown that for the water part, the proposed framework
could reduce the CT value error to less than 10 , and for the
high attenuated objects, the CT value accuracy could also be
improved significantly.

Figure (3) demonstrated the experimental results of the
prostate patient case. Severe scatter artifacts, such as the ring
artifact resulted from the bow-tie filter and the black-hole
artifact resulted from the half-fan detector shift geometry[16],
could be observed from the reconstruction when no correc-
tion algorithm is applied, as depicted in Fig. (3)(b). After
correction, the overall accuracy of the CT values has been
improved remarkably, as shown in Fig. (3)(c). It can be seen
that with the proposed framework, substantial scatter artifacts
are suppressed dramatically while the noise are also removed
efficiently. Quantitative evaluations about the averaged CT
values and the standard deviations are carried out based on
three different ROIs annotated in the rectangles in Fig. (3),
as summarized in Table (II). It could be seen that the CT
value accuracy is improved substantially while the noise level
is comparable with the planning CT.

IV. DISCUSSION AND CONCLUSION

In this study, promising reconstructions exhibiting signifi-
cant artifacts suppression and dramatic noise reduction were
achieved with the proposed framework.

High computational burden is one of the main bottlenecks of
iterative reconstruction algorithms to be practically used. And
some data correction algorithms such as those MC calculation
based aggravate this situation. In contrast, in this work, all the
dominant data degradations including noise, beam hardening
and scatter, are incorporated into a unified framework, and
only one extra forward projection is required in each iteration
compared to the conventional iterative reconstruction algorith-
m. This promises added-on value to the practically relevant sit-
uations regarding the computation complexity. Besides, in this
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Fig. 1. Digital phantom. The first and the second sub-figures correspond to two different transversal slices, respectively. The third sub-figure displays the
coronal view of the phantom. Display window: [0 1.65]g/cm3.

Fig. 2. Correction results for the digital phantom case. Rows (a) and (b) correspond to two different transversal slices. From left to right: images of the
ground truth, before correction and after correction. Seven ROIs as indicated by the blue rectangles are selected to calculate the CT values. The fourth column
plots the profiles shown in the first column. Display window: [-125 225] HU.

work, to boost the computation performance, several tricks are
utilized, such as the order subsets acceleration technique and
the Nesterov’s momentum technique. Note that both of them
are highly parallelizable, and hence, the computation speed can
be further enhanced through streamlining its implementation
with graphic processing unit(GPU).

Compared to our previous work in CT meeting 2016[17], in
this paper, we have conducted several other improvements. In
our previous work, we mainly focused on the scatter correction
performance, and hence did not take the stochastic property
and polyenergetic spectrum into consideration. In this work,
all of the three degradation factors were physically modeled,
as demonstrated in Eq. (6). Besides, because the effective
monoenergetic source was considered in our previous work,
the constant consumption of the human soft tissue can only
be made based on the linear attenuation coefficients which
were correlated with the assumed effective energy. While in
this work the polyenergetic spectrum was incorporated, the

assumption could be made based on the density of the tissue
which is fixed across different energy channels. Therefore,
our newly improved framework would be more realistic and
robust.

As there were only one simulated data set and one real data
set from IGRT examined in this feasibility study, more detailed
comparative studies are necessary to explore the extent to
which the proposed framework can be applied, especially in
different application scenarios such as small animal imaging,
dental CBCT imaging and etc.

In conclusion, a physics-based synergistic reconstruction
framework that considers various degradations simultaneously
was proposed in this work. Substantial image quality enhance-
ments were achieved with the proposed framework. In the
simulated experiment, the proposed framework could reduce
the CT value error to less than 10 for the water part, and the CT
value accuracy also can be improved significantly for the high
attenuated objects. In the real data experiment, comparable
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Fig. 3. Correction results for the prostate patient case. (a) (c) correspond to the images of the planning CT, before correction and after correction, respectively.
Three ROIs as indicated by the blue rectangles in the middle column are selected to calculate the CT values. Display window: [-250 250] HU.

CT values and noise levels as the planning CT images were
achieved with the proposed framework.
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