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Abstract—Iterative image reconstruction algorithms are 
commonly used to optimize an objective function, especially 
when the objective function is non-quadratic. Generally 
speaking, the iterative algorithms are computationally inefficient. 
This paper presents a fast algorithm that has one backprojection 
and no forward projection. This fast algorithm can be used to 
replace many iterative algorithms. This paper derives an ad hoc 
method to solve an optimization problem. The non-quadratic 
constraint, for example, an edge-preserving de-noising constraint 
is implemented as a non-linear filter. The algorithm is derived 
based on the POCS (projections onto projections onto convex 
sets) approach. A windowed FBP (filtered backprojection) 
algorithm enforces the data fidelity. An iterative procedure, 
divided into segments, enforces edge-enhancement denoising. 
Each segment performs non-linear filtering. The derived iterative 
algorithm is computationally efficient. It contains only one 
backprojection and no forward projection. Low-dose CT data 
are used for algorithm feasibility studies. The non-linearity is 
implemented as an edge-enhancing noise-smoothing filter. The 
proposed iterative algorithm is an ad hoc method. The patient 
studies results demonstrate its effectiveness in processing low-
dose x-ray CT data. 

Keywords—iterative image reconstruction; edge-enhancing de-
noising; non-linear filter; x-ray CT; fast algorithms  

I. INTRODUCTION

De-nosing is a classic topic in image processing and image 
reconstruction. The most traditional approach is to smooth the 
image with neighboring pixels. This is achieved by image 
domain convolution or Fourier domain low-pass filtering [1-4]. 
However, its side effects include blurred boundaries and 
reduced image contrast.  

The filtered backprojection (FBP) is the working horse in 
x-ray CT industry and in other imaging modalities. In order to
reduce reconstruction noise and image artifacts, iterative
reconstruction algorithms are commonly used to replace the
FBP. Iterative algorithms are used to optimize an objective
function. They are versatile in providing useful features,
reducing noise, and maintaining the sharp edges. However,
iterative algorithms are computationally inefficient and require
much more computational resources than the FBP approach.

If the objective function is quadratic, we previously derived 
an FBP algorithm that is able to give the result of an iterative 
algorithm in one step, using one backprojection. For an 
objective function that reduces noise while leaves the object 
edges unchanged is not likely be quadratic; our one-step FBP 
algorithm is not effective in this case. As a remedy, one can 

perform post-filtering to reduce the noise and maintain the 
edges. Many nonlinear filters can be used to reduce the noise 
while keeping the edges un-smoothed, such as the Huber filter, 
median filter, bilateral filter, guided filter, and the like [5-9]. 

This approach first reconstructs the image, and then applies an 
edge-preserving post filter. 

An iterative algorithm with embedded nonlinearity is not 
equivalent to a one-step reconstruction followed by post 
filtering. The iterative algorithms with some special constraints 
can outperform the one-step FBP algorithm followed by a post-
filter. The problem is that the iterative algorithms require much 
more computational resources than the one-step FBP 
algorithm. The goal of this paper is to develop a fast algorithm 
that has a non-quadratic regularization constraint, such as edge-
preserving denoising. 

One big difference between an FBP solution and an 
iterative solution is that the FBP solution does not need any 
initial conditions, while the iterative solution depends on the 
initial image. We first derive a windowed FBP algorithm that 
depends on the initial image. We then apply a non-linear filter 
(for example, an edge-preserving de-nosing filter) to the 
windowed FBP result. Next, we use the output of the non-
linear filter as the “initial” image for another iteration.  

This windowed FBP algorithm is not the conventional FBP 
algorithm; it is equivalent to n iterations of an iterative 
Landweber algorithm, where n can be any positive integer. The 
non-linear filter can be an edge-preserving noise-smoothing 
filter (e.g., Huber), median filter, bilateral filter, guided filter, 
and so on. Instead of “edge-preserving”, we can further make it 
“edge-enhancing.” Regardless the number of iterations, only 
one backprojection is needed and no forward projection is 
required in the proposed algorithm. We will make this point 
clear next. 

II. METHODS

A. Algorithm derication

The following gives an overview of the weighted FBP
algorithm, which was first introduced in reference [10]. The 
derivation of the weighted FBP algorithm starts with the 
iterative Landweber algorithm as presented in first line of (1): 

)( )1()1()(   kTkk AXPAXX 
)1()(  kTT XAAIPA 

])()[( )2(  kTTTT XAAIPAAAIPA 
 )2(2)()(  kTTTT XAAIPAAAIPA   
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This iterative algorithm is used to solve for the system 
PAX  , where X is the image and P is the projection 

sinogram.  The last line of (1) has two terms: the first term 
depending on the projection sinogram P and the second term 
depending on the initial image X(0). In (1), the parameter  is 
the step size and is upper-bounded by the sigular value of the 
matrix A. 

Using Eq. (5) in reference [10], we can further have 
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where we define 

TkTTk AAAIIAAF ])([)( 1)(   and .
 (3) 
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In [10], the initial image X(0) was assumed to me zero, and 
the first term can be re-written as a modified FBP algorithm. 
This weighted FBP algorithm is equivalent to k steps of the 
associated iterative Landweber algorithm. This paper does not 
assume X(0) = 0. 

 The second term )0()( XH k  in (2) was not discussed in [10] 
but is considered in this paper. This second term can be 
considered as an operator H acting on the initial image X(0). 
The operator H in the matrix form is defined as 

 as shown in (3). Since A is the projector 
and AT is the backprojector, the combined operator ATA has a 
point spread function of 1/r, where r is the distance from the 
point source. The 2D Fourier transform of 1/r is 

kTk AAIH )()( 

||||/1  ,
where   is the frequency vector in the Fourier domain. Thus

||||/1   is a lowpass filter and ||)||/1(  
 is a highpass 

filter. Consequently, the Fourier domain representation of H, 
k||)||/1(  

 , is also a highpass filter. In computer 
implementation, the frequency vector   is discretized, and the
parameter  is chosen such that 1|||)||/1(|   

to prevent
divergence with a large k.

On the other hand, the first term in (2) can be considered as 
an operator F acting on the projections P. The operator F in the 
matrix form is defined as  
as shown in (3). This operator consists of three parts: AT is a 
backprojector, is a lowpass window function, 

and  is the 2D ramp filter 
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It is ready to see that  is the 2D ramp filter 1)( AAT ||||

because ATA corresponds to ||||/1  , and is a
lowpass window function because it corresponds to 

k)T AAII ( 

k||)||/1(1  
 and ||)||/1(  

 is a highpass filter. If one 
uses the central-slice theorem, this “backprojection first, then 
filter” operation F can be equivalently achieved by “filter first, 
then backproject,” which is the weighted FBP procedure. In the 
weighted FBP procedure a 1D ramp filter || is used and the 
lowpass window function is . k|)|/1(1 

If one wishes, the projection noise weighting can be 
embedded in the first term. The noise weighting is achieved by 
modifying the “step size”   as w 0  in the window 

function , where 0 is a default “step size” and 
w is the weighting function. A smaller weighting function w for 
less noisy projections and a larger weighting function w for 
noisier projections [11, 12]. In this paper, for the sake of 
simplicity, the noise weighting is not included in algorithm (2).  

kT AAII )( 

The above linear algorithm enforces projection data 
fidelity. Edge-preserved denoising will be enforced by a non-
linear filter. The structure of our approach is in the form of 
“alternating projection,” which is sometimes referred to as the 
POCS ((projections onto projections onto convex sets) method. 
In other words, it is equivalent to k iterations of the Landweber 
followed by non-linear edge-preserving filter, then another k 
iterations of the Landweber followed by non-linear edge-
preserving filter, and so on. The “k iterations of the 
Landweber” is actually achieved by a weighted FBP. This 
iterative scheme can be made even efficient as follows. 

  Any filter can be used as the nonlinear filter; for example, 
an edge-preserving denoising filter can be chosen. Let us 
symbolically represent the chosen nonlinear filter as G. Thus, 
the proposed iterative algorithm can be expressed as 

]0[ )()1(  PFGY k , 

][ )1()()()2( YHPFGY kk  , 

][ )2()()()3( YHPFGY kk  , 
… 

][ )1()()()(  nkkn YHPFGY . (4) 

The final result for the reconstructed image X is )(nY  with a 
“segment” number n.  Each segment contains k “iterations” as 
indicated in the superscript of )(kF  if )(kF were implemented 
as an iterative algorithm. In our algorithm both )k(F  and )(kH  
are one-step procedures, and k is just a parameter. 

We use notation )(nY  (instead of )(nX ) is to avoid the 
confusion with the result of the iterative algorithm (2) which 
does not use any nonlinear filters. In other words, notation 

)(kX  is for the results of the iterative algorithm (2) without any 

nonlinearity involved; notation )(nY  is for the results of the
iterative algorithm (4) with a nonlinear filter G. 
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B. Implementation considerations

The implementation of the first term in (2), , has 
been explained in details in [10] as an FBP procedure. The first 
step in this modified FBP algorithm is one-dimensional 
windowed ramp filtering of the sinogram data. The Fourier 
domain window function is given as  

PF k )(

kwindow )
||

1(1)(

  , when 0 ; 1)0( window . (5) 

Here  is the frequency and  > 0 is the “step size.” If 
noise weighting is to be incorporated,  is a function of the 
reciprocal of the noise variance [11, 12].  The second step is to 
perform backprojection as in a usual FBP algorithm.  

When this first step is implemented in the Fourier 
domain, the frequency  is discretized in the range of [-0.5, 
0.5]. In order to reduce the bias errors, the sinogram P needs to 
be zero-padded along the detector dimension, say, to reach the 
array size of 2048 [14].  The selection of the parameter  
depends on the frequency sampling interval  so that  

1|/1|   . (6) 

For example, if the zero-padded 1D array size is 2048, 
which corresponds to  = 1/2048. In this case,  

1024/120    . (7) 

The second term in (4) )()( mk YH  is a high-pass filtering of 
the image )(mY . The implementation of it is first to evaluate 
the two-dimensional (2D) Fourier transform of the image )(mY , 
and then to multiply the transformed image by  

k)/1(  
 (8) 

and finally to calculate the inverse 2D Fourier transform. 
Neither projection nor backprojection is required for the 
implementation of the second term in (4).  

III. RESULTS

This algorithm was developed while the author was 
participating the 2016 Low-Dose CT Grand Challenge, 
organized by NIH (National Institutes of Health), AAPM 
(America Association of Physicists in Medicine) and Mayo 
clinic. The author was the 3rd place. Dr. Cynthia McCollough, 
the main organizer of the Grand Challenge from Mayo clinic, 
provided us some low-dose x-ray CT patient torso images. The 
image slice was 512 x 512 and the slice thickness was 3 mm. 
The image volumes were first forward projected using the 
parallel-beam geometry, to generate projection sinograms. The 
parallel-beam sinograms are then used as the inputs for our 
proposed algorithm.  It is well understood that the re-projected 
sinogram does not carry exactly the same information as the 
original sinogram. The spatial resolution may get degraded. 
The original projection data generally do not satisfy the data 
consistency conditions, while the re-projected data always 
satisfy the data consistency conditions. The noise in the 
original data can be assumed to be independent; however, the 
noise in the re-projected data is not independent. 

We used the following parameters for image processing:  
= 0.001, k = 2000, local 3D region size = 3 x 3 x 3,  = 0.0005, 
 = 1.05, and n = 10. The second equation in (13) was used 
instead of Eq.  (10).  Four pairs of images are shown in Fig. 1. 
Each pair is one slice from a patient. All images are shown in 
the Hounsfield Unit window of [900, 1200]. Images on the left 
are reconstructed via the conventional FBP algorithm provided 
by the Grand Challenge organizer. Images on the right are 
reconstructed with the proposed algorithm. The image 
reconstruction algorithms were programmed in MATLAB and 
were run on a CPU in a Linux operation system. The 
reconstruction time for the conventional FBP was 3.59 seconds 
per slice; for the proposed algorithm was 3.72 seconds per 
slice. 

Figure 2 provides two additional reconstructed images for 
Patient #136 (slice 30). Fig. 2 (Left) is the reconstruction with 
windowed FBP (using k = 2000) and no nonlinear filter is 
applied. Fig. 2 (Right) shows the reconstruction using proposed 
algorithm (using k = ∞, that is, a conventional FBP is used as 
the initial image). From this example, it seems that the 
nonlinear filter plays a more important role than the window 
function in the weighted FBP algorithm. However, the window 
function will make significant difference when the projection 
noise weighting is included and severe streaking artifacts are 
present if no noise weighting is used, as shown in [11]. 

Patient 008, Slice 34 

Patient 031, Slice 66 

Patient 057, Slice 49 

Patient 136, Slice 30 
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Figure 1. Image reconstruction results for 7 patients. Left: conventional FBP. 
Right: proposed algorithm. 
 
Patient 136, Slice 30 

  
Figure 2.  Reconstructed image for Patient136 (slice 30). Left: windowed FBP 
reconstuction without nonlinear filtering. Right: proposed algorithm with k = 
∞ (i.e., conventinal FBP with nonlinear filtering). 

IV. DISCUSSION AND CONCLUSIONS 

The conventional iterative algorithm consists of projection, 
backprojection, and procedures corresponding to special 
constraints. This paper has presented the following concepts 
and methods: 

An iterative algorithm can have a structure of “segments.” 
Each segment can contain multiple (k)  linear iterations. At the 
end of each segment, a non-linear is performed.  

There are k linear iterations for every segment, and these k 
linear iterations can be implemented in one step, in the form of 
an FBP algorithm. Compared with a conventional FBP 
algorithm, this modified FBP algorithm has an extra window 
function applied to the ramp filter. This window function 
depends on the iteration number k and the step size . It can 
also depend on the noise weighting model. The fast algorithm 
takes the advantage that the modified FBP has two parts: one 
part depends only on the projection sinogram, and the other 
part depends only on the initial image. The part depending on 
the projection sinogram can be pre-calculated. The other part is 
a high-pass filtered version of the initial image for the current 
segment. Neither projector nor backprojector is needed in this 
highpass filter. This highpass filter can be implemented as: 
performing the 2D FFT on the initial image, multiplication of 
the transfer function (8), and performing the 2D IFFT (inverse 
fast Fourier transform). The initial image is the result from the 
previous segment. 

In our application, the weighted FBP )(kF and the highpass 
filter )(kH  (8) are 2D; the edge-enhancing denoising filter is 
3D. The users are free to change them according to their 
applications. A fast algorithm relies on the balance of the k (the 
number of linear iterations, which are actually accompished by 
a pre-calculated weighed FBP image) and n (the number of 
segments). One can choose a large k (say, 1000) and small n 
(say, 5), depending on the applications and tasks. When n = 1, 
the proposed algorithm reduces to the reconstruction plus post-
filtering algorithm. 

We have applied the proposed iterative algorithm to some 
patient low-dose x-ray CT data for the feasibility study. One 
can clearly observe the image quality improvement over the 
conventional FBP method. The computation time is slightly 
longer than that of the conventional FBP algorithm. 
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