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Abstract—We propose a new penalized weighted-least squares
(PWLS) reconstruction method that exploits regularization based
on an efficient Union of Learned TRAnsforms (PWLS-ULTRA).
The union of square transforms is pre-learned from numerous 3D
patches extracted from a dataset of CT volumes. The proposed
PWLS-based cost function is optimized by alternating between a
CT image reconstruction step, and a sparse coding and clustering
step. The CT image reconstruction step is accelerated by a
relaxed linearized augmented Lagrangian method with ordered-
subsets that reduces the number of forward and backward
projections. Simulations with 3D axial CT scans of the XCAT
phantom show that for low-dose levels, the proposed method sig-
nificantly improves the quality of reconstructed images compared
to PWLS reconstruction with a nonadaptive edge-preserving
regularizer (PWLS-EP). PWLS with regularization based on a
union of learned transforms leads to better image reconstructions
than using a single learned square transform.

I. INTRODUCTION

The development of computed tomography (CT) image re-
construction methods that significantly reduce patient radiation
exposure while maintaining high image quality is an important
area of research in low-dose CT (LDCT) imaging.

The analytical filtered back-projection (FBP) image re-
construction method typically produces unacceptable image
quality when the radiation dose is reduced. Model-based
image reconstruction (MBIR) methods, aka statistical image
reconstruction methods, can provide high-quality reconstruc-
tions from low-dose scans. In MBIR methods, penalized
weighted-least squares (PWLS) cost functions with a statis-
tically weighted quadratic data-fidelity term and a penalty
term (regularizer) modeling prior knowledge of the underlying
unknown object are commonly used [1].

Extracting prior information from big datasets of regular
dose CT images has great potential to enable MBIR methods to
produce improved reconstructions from LDCT measurements.
For example, dictionary learning has been recently applied
to CT image reconstruction and was shown to have better
performance over total variation-based PWLS method [2]. The
sparse coding step in both synthesis dictionary learning and
analysis [3] dictionary learning is NP-Hard and methods such
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as K-SVD [4], [5] involve expensive computations. Recently,
Ravishankar et al. [6], [7] proposed a generalized analysis dic-
tionary learning approach, called sparsifying transform learn-
ing, to more efficiently learn a square transform (ST). Pfister
et al. [8] showed the promise of PWLS reconstruction with ST
based regularization by combining the MBIR technique with
an adaptive ST based regularizer, to jointly estimate the ST
and the image. More recently, Wen et al. extended the single
ST learning method to learning an overcomplete transform
with block cosparsity (OCTOBOS) [9]. This approach jointly
learns a union of square transforms and a clustering of image
patches or textures.

Incorporating the OCTOBOS model, we propose a new
PWLS reconstruction method with regularization based on
a Union of Learned TRAnsforms (PWLS-ULTRA) for 3D
(e.g., cone beam) LDCT reconstruction. The union of square
transforms is pre-learned from numerous 3D patches extracted
from a dataset of CT volumes. Experiments with 3D axial CT
scans of the XCAT phantom show that for low-dose levels,
the proposed PWLS-ULTRA method significantly improves
the quality of reconstructed images compared to PWLS re-
construction with a nonadaptive edge-preserving regularizer
(PWLS-EP). While we recently proposed a PWLS method
based on a pre-learned ST (PWLS-ST) for 2D CT [10],
here we study its extension to 3D CT reconstruction. PWLS-
ULTRA that uses a union of learned transforms is shown to
lead to better image reconstructions than PWLS-ST that uses
a learned ST. The image reconstruction step of the proposed
PWLS based methods is accelerated by a relaxed linearized
augmented Lagrangian method with ordered-subsets (relaxed
OS-LALM) [11].

II. PROBLEM FORMULATION

We reconstruct an image volume x ∈ RNp from noisy
sinogram data y ∈ RNd using a union of K pre-learned square
transform matrices {Ωk ∈ Rl×l, k = 1, . . . ,K}, by solving
the following optimization problem:

min
x∈C

1

2
‖y −Ax‖2W + βR(x) (P0)

where the regularizer R(x) is based on a union of sparsifying
transforms, and is defined as

R(x) , min
{zj ,Ck}

K∑
k=1

{ ∑
j∈Ck

{
‖ΩkPjx− zj‖22 + γ2‖zj‖0

}}
s.t. {Ck} ∈ G,

(1)
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where W = diag{wi} ∈ RNd×Nd is the diagonal weighting
matrix with elements being the estimated inverse variance of
yi [12], A ∈ RNd×Np is the system matrix of a CT scan, and
C , {x|xj ≥ 0,∀ j}. The operator Pj ∈ Rl×Np extracts the
jth patch of l voxels of x as Pjx, vector zj ∈ Rl denotes
the transform-sparse representation of Pjx, and ‖zj‖0 is the
`0 “norm” that counts the number of nonzero elements in zj .
(P0) assigns patches to K clusters, and the patches in the kth
cluster are matched to the transform Ωk. The set Ck contains
the indices j corresponding to the patches Pjx in the kth
cluster, and G is the set of all possible partitions of the set of
integers [1 : N ] , {1, 2, ..., N} into K disjoint subsets. The
parameter β > 0 controls the noise and resolution trade-off,
and γ > 0 is a weight that controls the sparsity in the model.

In (P0), the patches of the underlying image are assumed to
be approximately sparse in the learned union of sparsifying
transforms domain. We estimate the image x, the sparse
coefficients {zj}, and the cluster assignments {Ck} from
LDCT data y.

III. ALGORITHMS

A. Learning a Union of Sparsifying Transforms
We pre-learn the union of sparsifying transforms from Ñ 3D

patches extracted from a dataset of regular dose CT volumes
by solving the following training optimization problem:

min
{Ωk,Zi,Ck}

K∑
k=1

∑
i∈Ck

{
‖ΩkYi − Zi‖22 + η2‖Zi‖0

}
+

K∑
k=1

λkQ(Ωk) s.t. {Ck} ∈ G

(P1)

where η > 0 is a scalar parameter, and {Zi}Ñi=1 denote
the sparse codes of the training signals (vectorized patches)
{Yi}Ñi=1. We set λk = λ0‖YCk

‖2F [9], where λ0 > 0
is a constant and YCk

is a matrix whose columns are the
training signals of {Yi}Ñi=1 in the kth cluster. Regularizer
Q(Ωk) , ‖Ωk‖2F − log |det Ωk| prevents trivial solutions and
fully controls the condition number of Ωk [6].

We use an alternating minimization algorithm for (P1) that
alternates between a transform update step (solving for {Ωk})
and a sparse coding and clustering step (solving for {Zi, Ck}).
The transform update step is performed the same way (using
singular value decompositions) as in [9]. The sparse coding
and clustering step has a simple closed-form solution as
follows. First, it is clear that if the cluster memberships
of the patches are fixed, then the optimal sparse codes are
Zi = Hη(ΩkYi),∀i ∈ Ck, where the hard-thresholding
operator Hη(·) zeros out vector entries with magnitude less
than η. Using this result, it follows that the optimal clus-
ter membership for each Yi is k̂i = arg min

1≤k≤K

{
‖ΩkYi −

Hη(ΩkYi)‖22+η2‖Hη(ΩkYi)‖0+λ0‖Yi‖22Q(Ωk)
}

, and the
optimal sparse code is Ẑi = Hη(Ωk̂i

Yi).

B. Optimization Algorithm for (P0)
We propose an alternating algorithm for (P0) that alternates

between updating x (image update step), and {zj , Ck} (sparse
coding and clustering step).

1) Image Update Step: With {zj , Ck} fixed, (P0) reduces
to the following weighted least squares problem:

min
x∈C

1

2
‖y −Ax‖2W + β

K∑
k=1

∑
j∈Ck

‖ΩkPjx− zj‖22. (2)

Here, we denote the second term as R2(x). Using relaxed
OS-LALM [11], we solve (2) by iterating over the following
updates, where for each k, we further iterate over 1 ≤ m ≤M ,
i.e., the M ordered subsets:

s(k+1) = ρ(DAx(k) − h(k)) + (1− ρ)g(k)

x(k+1) = [x(k) − (ρDA + DR)−1(s(k+1) +∇R2(x(k)))]C

ζ(k+1) ,MAT
mWm(Amx(k+1) − ym)

g(k+1) =
ρ

ρ+ 1
(αζ(k+1) + (1− α)g(k)) +

1

ρ+ 1
g(k)

h(k+1) = α(DAx(k+1) − ζ(k+1)) + (1− α)h(k)

(3)
where DA � ATWA is a diagonal majorizing matrix of
ATWA (e.g., DA , diag{ATWA1} � ATWA [13]),
∇R2(x) = 2β

∑K
k=1

∑
j∈Ck

PT
j ΩT

k (ΩkPjx−zj), the opera-
tor [·]C projects the input vector onto the convex set C, Am is
the subset forward projection matrix, and Wm is a sub-matrix
of W. The initial g(0) = ζ(0) = MAT

MWM (AMx(0) −
yM ) and h(0) = DAx(0) − ζ(0), with x(0) being the
most recent estimate of the image volume (warm start). The
(over-)relaxation parameter α ∈ [1, 2), ρ > 0 is the AL
penalty parameter decreasing gradually with iteration [10],
and DR � ∇2R2(x) = 2β

∑K
k=1

∑
j∈Ck

PT
j ΩT

kΩkPj is a
diagonal majorizing matrix of the Hessian of the regularizer
R2(x), specifically,

DR , 2β
{

max
k

λmax(ΩT
kΩk)

} K∑
k=1

∑
j∈Ck

PT
j Pj . (4)

The term
∑K
k=1

∑
j∈Ck

PT
j Pj =

∑Np

j=1 PT
j Pj ∈ CNp×Np

above is a diagonal matrix with the diagonal entries corre-
sponding to image pixel locations and their values being the
number of contributing image patches [14]. If we assume
periodically positioned overlapping image patches that wrap
around at image boundaries, and a patch stride of 1 voxel along
each (of x, y, z) direction, then

∑Np

j=1 PT
j Pj = lI, where I

is identity matrix. Since the DR in (4) is independent of x,
{zj}, and {Ck}, we precompute it prior to iterating.

2) Sparse Coding and Clustering Step: With x fixed, we
solve the following problem to determine the optimal sparse
codes and cluster assignments for each patch:

min
{zj},{Ck}∈G

K∑
k=1

{ ∑
j∈Ck

{
‖ΩkPjx− zj‖22 + γ2‖zj‖0

}}
. (5)

For each j, with zj = Hγ(ΩkPjx), the optimal cluster
assignment is as follows:

k̂j = arg min
1≤k≤K

‖ΩkPjx−Hγ(ΩkPjx)‖22+γ2‖Hγ(ΩkPjx)‖0.

Minimizing over k for each patch Pjx above determines
which cluster the patch belongs to. Then, the optimal sparse
codes are ẑj = Hγ(Ωk̂j

Pjx).
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IV. EXPERIMENTAL RESULTS

We evaluated the proposed PWLS-ULTRA method for
axial cone-beam CT reconstruction, and compared the im-
age reconstruction quality with those of the conventional
Feldkamp-Davis-Kress (FDK) method with a Hanning win-
dow, and PWLS reconstruction with edge-preserving regular-
ization (PWLS-EP). We also evaluated the proposed method
with K = 1, i.e., the PWLS-ST method.

We pre-learned a union of square transforms from a 512×
512×54 XCAT phantom [15] using (P1). We extracted 8×8×8
overlapping image patches with a patch stride 2×2×2 (Ñ ≈
1.5 × 106 patches) for learning. To ensure convergence, we
ran the alternating minimization algorithm for (P1) for 1000
iterations, and set λ0 = 31 and η = 50.

We simulated an axial CT scan using a 840×840×96 XCAT
phantom that differs from the training phantom, with ∆x =
∆y = 0.4883 mm and ∆z = 0.625 mm. We used the “Poisson
+ Gaussian” model, i.e., yi ∼ k Poisson{I0 exp(−[Ax]i)} +
Normal{0, σ2} to generate CT measurements, where the pa-
rameter k = 1 models the conversion gain from X-ray photons
to electrons, and σ2 = 52 is the variance of electronic noise
[16]. We set yi = max(yi, 0.1) to clip negative values. We
generated sinograms of size 888× 64× 984 using GE Light-
Speed cone-beam geometry corresponding to a monoenergetic
source with I0 = 1×104 and 5×103 incident photons per ray
and no scatter, respectively. We reconstructed a 420×420×96
volume with a coarser grid, where ∆x = ∆y = 0.9766 mm
and ∆z = 0.625 mm.

To compare the methods quantitatively, we calculated the
Root Mean Square Error (RMSE) and Structural Similarity
Index Measurement (SSIM) [17] of the reconstructions in
a region of interest (ROI). In our experiments, the ROI
consisted of the central 64 of 96 axial slices and a cir-
cular (around center) region in each slice (i.e., cylinder in
3D). RMSE in Hounsfield units (HU) is defined as RMSE

=

√∑Np,ROI
i=1 (x̂i − x∗i )2/Np,ROI, where x∗ is the ground truth

image and Np,ROI is the number of voxels in the ROI.
For the PWLS-EP method, we used the edge-preserving

regularizer R(x) =
∑Np

j=1

∑
k∈Nj

κjκkϕ(xj − xk), where
ϕ(t) , δ2(|t/δ| − log(1 + |t/δ|)) (δ = 10 HU), Nj is the
neighborhood, and κj and κk are the parameters encouraging
noise uniformity [18]. Initialized with FDK reconstructions,
we ran the PWLS-EP algorithm with regularization parameter
214 for 50 iterations using relaxed OS-LALM with 24 subsets
(for both photon intensities).

For the proposed PWLS-ST and PWLS-ULTRA methods,
the patch size was set as 8× 8× 8 and the overlapping stride
was set as 2 × 2 × 2 during reconstruction (N ≈ 2 × 106

patches). PWLS-EP reconstructions were used to initialize the
image in the proposed methods. We empirically chose (β, γ)
for I0 = 1 × 104 and 5 × 103 as follows:

(
2.0× 105, 20

)
and

(
1.5× 105, 20

)
for PWLS-ST; and

(
2.5× 105, 20

)
and(

1.5× 105, 25
)

for PWLS-ULTRA. In each iteration of the
proposed methods, we ran 2 iterations of the image update
step with 4 subsets. We performed clustering once every 50
outer iterations, which worked well and saved computation.

TABLE I: RMSE (HU) and SSIM of reconstructions with
FDK, PWLS-EP, PWLS-ST (K = 1) and PWLS-ULTRA
(K = 15) for two incident photon intensities.

Intensity FDK PWLS-EP PWLS-ST PWLS-ULTRA

1× 104
67.8 33.7 31.9 31.5

0.536 0.917 0.976 0.979

5× 103
89.0 39.9 37.3 37.2

0.463 0.894 0.967 0.969

Figure 1(a) shows the reconstructions (shown for the central
axial, sagittal, and coronal planes) by FDK, PWLS-EP and
PWLS-ULTRA (K = 15). Compared to FDK and PWLS-
EP, PWLS-ULTRA significantly improves image quality with
respect to reducing noise and preserving structural details.
Figure 1(b) shows the RMSE for each axial slice (in ROI)
in the PWLS-EP and PWLS-ULTRA reconstructions. PWLS-
ULTRA clearly provides large improvements in RMSE for
many slices, with greater improvement near the central slice.

Figure 2 presents an example of the pixel-level clustering
in the PWLS-ULTRA (K = 5) reconstruction. Since PWLS-
ULTRA clusters image patches, we cluster individual pixels
using a majority vote among the (3D) patches that overlap
the pixel. Class 1 contains most of the soft tissues; Classes 2
and 3 have some high-contrast edges oriented along specific
directions; Class 4 comprises most of the bones and blood ves-
sels; and Class 5 mainly includes the low-contrast edges. Since
the clustering step (both during learning and reconstruction)
is unsupervised, i.e., different anatomical structures were not
labeled manually, there are also a few edges with high pixel
intensities included in Class 4.

Table I lists the RMSE and SSIM values in the ROI of the
reconstructions with FDK, PWLS-EP, PWLS-ST (K = 1),
and PWLS-ULTRA (K = 15). Both PWLS-ST and PWLS-
ULTRA significantly improve the RMSE and SSIM achieved
by the PWLS-EP method. PWLS-ULTRA (K > 1) using a
union of learned transforms leads to better reconstructions than
PWLS-ST with a single learned square transform.

V. CONCLUSION

We presented the PWLS-ST and PWLS-ULTRA methods
for low-dose 3D CT imaging, which combine conventional
PWLS reconstruction with regularization based on learned
sparsifying transforms. Simulations with 3D axial CT scans
of the XCAT phantom show that the proposed methods help
reduce X-ray dose to a low level while still providing high
quality image reconstructions. For future work, we plan to
compare the proposed methods to PWLS with regularization
based on a learned synthesis dictionary [2]. We will also apply
the proposed methods to clinical CT data.
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