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Abstract—Among most popular feature extractors, pretrained
deep neural networks play a central role in transfer learning
to extract high-level feature on small datasets. The transferable
performance, however, cannot be guaranteed for the task of inter-
est. To enhance the transferability, this paper employs fine-tuning
and feature selection in a different way to improve the accuracy
of lung nodule classification. The fine-tuning technique retrains
the neural network using lung nodule dataset, while feature
selection captures a useful subset of features for lung nodule
classification. Preliminary experimental results on CT images
from Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI) confirm that the classification
accuracy on lung nodule can be significantly improved via fine-
tuning and feature selection. Furthermore, the results outperform
competitively handcrafted texture descriptors.

Index Terms—Deep learning, lung nodule classification, fine-
tuning technique, feature selection

I. INTRODUCTION

LUNG cancer is an aggressive and heterogeneous disease
with a low long-term survival rate [1]. Computed Tomog-

raphy (CT) is the imaging modality of choice for evaluation
of patients with suspected or known lung cancer. CT is also
the preferred modality for screening lung cancer, which often
present as lung nodules. Unfortunately, many lung nodules
are benign in etiology. Radiologists rely on several qualita-
tive and quantitative factors to describe pulmonary nodules
such as nodule size, shape, margin, attenuation and location
in the lungs [2]. One of the critical nodule characteristics
is the classification between malignant and benign nodules,
which facilitates nodule staging assessment and consequent
therapeutic planning [3], [4], [5].

Previous nodule analysis, mostly based on handcrafted
texture feature extractors [3], [6], [7], suffers from the need of
specialized knowledge in selecting parameters and robustness
to different datasets. Motivated by the successful applications
of deep neural networks (DNNs) to image classification [8],
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[9], [10], the deep features extracted from DNNs are more gen-
eral and of high-level as compared with handcrafted ones [11].
Training DNNs, however, requires massive data for avoiding
overfitting, which is often infeasible for a small dataset such
as LIDC-IDRI [12], even data augmentation techniques are
adopted in the training phase [8]. One popular way to apply
DNNs to the small datasets is the transfer learning, taking a
pretrained DNN on a large-scale dataset as a feature extractor
for a task of interest [11], [13]. In particular, success has been
found in transferring knowledge from general object recogni-
tion tasks to classification tasks in which their categories are
similar [11].

In this paper, we apply the transfer learning from pretrained
DNNs on the large-scale image classification dataset Ima-
geNet [14] for our lung nodule classification. One problem is
that we do not know whether deep features directly extracted
from pretrained DNNs are suitable for our lung nodule clas-
sification. To improve the transferability, we employ the fine-
tuning and feature selection techniques to make deep features
more suitable for lung nodule classification. More specifically,
the fine-tuning technique retrains DNNs using lung nodule
data, and feature selection captures a useful subset of features
for lung nodule classification. Experimental results confirm
that the classification performance can be improved through
fine-tuning and feature selection techniques. Furthermore, our
results outperform handcrafted texture descriptors.

II. METHODOLOGY

A. Data preparation

The LIDC-IDRI dataset [12] consists of diagnostic and
lung cancer screening thoracic CT scans with annotated lung
nodules from a total number of 1, 010 patients. Furthermore,
each nodule was rated from 1 to 5 by four experienced
thoracic radiologists, indicating an increasing probability of
malignancy. In this study, the ROI of each nodule was obtained
along with its annotated center in accordance with the nodule
report1, with a square shape of a doubled equivalent diameter.
An average score of a nodule was used for assigning proba-
bility of malignant etiology [3], [4]. Nodules with an average
score higher than 3 were labeled as malignant. Nodules with
an average score lower than 3 were labeled as benign. Some
nodules were removed from the experiments in the case of the
averaged malignancy score 3, ambiguous IDs, and being rated

1http://www.via.cornell.edu/lidc/
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Fig. 1. Schematic of extracting deep features from the pretrained AlexNet through fine-tuning technique and feature selection. Columns from left to right
indicate the architecture of AlexNet, flatten deep features, deep features with eliminating all zero-variance columns (Raw feature), and deep features after
feature selection. The last row is the fine-tuned Conv4. Note that the deep feature at the lower right corner was obtained by 1) fine-tuning Conv4, 2) eliminating
zero-variance columns, and 3) extracting a subset through feature selection.

by only one radiologist. To sum up, there were 959 benign
nodules and 575 malignant ones. The size of benign ROIs
ranged from 8 to 92 pixels, with a mean size of 17.3 and a
standard deviation of 7.0 pixels. The size of malignant ROIs
ranged from 12 to 95 pixels, with a mean size of 35.4 and a
standard deviation of 15.8 pixels.

B. Pretrained AlexNet

AlexNet was a classical convolutional neural network
model [8], including five convolutional layers, three pool-
ing layers, two local response normalization (LRN) layers,
and three fully connected layers. A publicly available ver-
sion of AlexNet was pretrained on the large-scale ImageNet
dataset [14], which contains 1M images and 1K classes. The
weights of pretrained AlexNet were preinitialized and can be
downloaded from the Caffe website2, which was used in our
experiments.

The pretrained AlexNet was used to extract deep features
from ROIs of the lung nodules. After removing the last fully
connected layer for classification into 1K classes, each layer

2http://dl.caffe.berkeleyvision.org/

of the AlexNet would be a feature extractor. This is to say
that 12 different deep features can be extracted from one ROI.
The process of extracting features was depicted in Fig. 1.
The first column indicated the architecture of AlexNet, and
the numbers in the second column denoted the dimensions of
flatten features extracted from all the layers of AlexNet. Those
flatten features after eliminating all zero-variance columns
were used to train Random Forest (RF) classifiers [15], which
were in the third column and called raw features.

Yosinski et al. reported that those deep features extracted
from earlier layers of deep neural networks were more gen-
eralizable (e.g. edge detectors or color blob detectors) that
should be useful to many tasks [11]. Those features extracted
from later layers, however, become progressively more specific
to the details of the classes contained in the original dataset.
In the case of ImageNet, which includes many dog breeds,
a significant portion of the representation power of AlexNet
may be devoted to features that are specific to differentiating
between dog breeds. Due to the difference between our lung
nodule dataset and ImageNet, we were not sure which layer
would be more suitable for lung nodule classification. There-
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fore, features from all the layers were evaluated in Section III.
It should be noted that a pretrained neural network does

not contain any specific information about lung nodule. To
enhance the transferability from the pretrained AlexNet, the
following two subsections will describe the fine-tuning tech-
nique and feature selection for adapting to lung nodule clas-
sification.

C. Fine-tuning AlexNet

As a popular strategy for transfer learning, fine-tuning
AlexNet was not only to replace and retrain the classifier on
the top of AlexNet using the lung nodule dataset but also to
fine-tune the weights of the pretrained AlexNet through the
backpropagation.

In view of the classification accuracy reported in Section III,
feature obtained from Conv4 was more suitable for lung nodule
classification than those of other layers. In this study, we
replaced the layers after Conv4 with a fully connected layer
as the binary classifier. Due to the concern of overfitting, we
only tuned Conv4 and enlarged lung nodule data for retraining.
Methods for enlarging lung nodule data included random
rotation, random flip, random shift, random zoom, and random
noise. Fig. 2 presented the data augmentation results for a lung
nodule in the experiments.

(a) Original nodule (b) Random rotation (c) Random flip

(d) Random shift (e) Random zoom (f) Random noise

Fig. 2. Illustration of data augmentation for a lung nodule.

The fine-tuned Conv4, called FTConv4, was at the last row
in Fig. 1.

D. Feature selection

The another strategy for extracting information from raw
features is feature selection, which was in the last column of
Fig. 1.

Deep features extracted from AlexNet suffer from the
curse of the dimensionality and are redundant to lung nodule
classification, even after Conv4 was fine-tuned with our lung
nodule dataset. Here we took Conv4 as an example. After
removing the zero-variance columns, one ROI was represented
by a 58, 297-dimensional vector. Using the feature importance

measurement provided by RF classifier, there were 26, 842
columns with feature importances of zero to lung nodule
classification as shown in Fig. 3. This is to say, almost
half of features extracted from Conv4 were irrelevant to the
classification of lung nodules.
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Fig. 3. Feature importance of deep features extracted by Conv4. Note that we
sort the columns of features in ascending fashion according to their importance
scores.

In other words, we computed the feature importances with
the random forest classifier, which in turn were used to discard
irrelevant features. Those columns with importance scores
higher than the averaged importance score were kept as the
relevant features for lung nodule classification as shown in the
last column in Fig. 1.

III. EXPERIMENTAL RESULTS

A. Experimental setup

Each ROI was up-sampled into 227 × 227 × 3 and then
fed into AlexNet. It should be noted that each ROI had
three channels despite being grayscale to fit the AlexNet
which was originally designed for color images. For evaluating
the performance of extracted features, ROIs were randomly
divided into a training set with 60% lung nodules and a testing
set with remaining lung nodules. We trained the random forest
classifier on the training set and computed the classification
accuracy on the testing test. The reported results were averaged
on 50 repetitions. The RF classifier was taken from the scikit-
learn package [16].

B. Classification after enhancing transferability of AlexNet

Fig. 4 presents the classification accuracies with raw fea-
tures extracted from each layer of the pretrained AlexNet
and fine-tuned Conv4 on our lung nodule dataset as well as
the deep features after feature selection. As shown in Fig. 4,
the features extracted from Conv4 outperform those from the
other layers. Features from layers earlier than Conv4 were
insufficient to characterize the lung nodules, and features from
layers later than Conv4 were more specific to their original
dataset, leading to slight performance decrement.

To enhance the transferability of the pretrained AlexNet,
Fig. 4 also presented the classification accuracies using fine-
tuning and feature selection techniques. The results from
fine-tuned Conv4, FTConv4, were shown in the rightmost of
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Fig. 4. Classification accuracy with deep features extracted from each layer
of AlexNet.

Fig. 4. After fine-tuning AlexNet on the lung nodule data,
the classification accuracy was slightly improved compared to
Conv4. However, feature selection can significantly improve
the classification accuracy. The reasons were two-folds. On
one hand, compared with the parameters of Conv4, the lung
nodule dataset was still too small to fine-tune AlexNet. Most
of features extracted from Conv4 were irrelevant to lung nod-
ule classification, which increased the difficulty in retraining
AlexNet. On the other hand, feature selection can remove those
irrelevant features and extract a useful subset of features for
classification. The best classification accuracy was achieved
with the deep features from FTConv4 after feature selection.

C. Comparison with baseline algorithms

We compared our results with two handcrafted competing
texture descriptors including the local binary pattern (LBP) [6]
and the histogram of gradient (HOG) [7]. LBP and HOG were
sensitive to window size and number of neighborhood points
respectively. We used 3-fold cross-validation to tune these two
parameters. The averaged results are in Table I. LBP and HOG
were copied from the scikit-image package [17].

TABLE I
COMPARISON WITH BASELINE ALGORITHMS

Method LBP HOG FTConv4

Accuracy 0.799±0.013 0.838±0.012 0.852±0.011

It can be seen that the feature extracted from Conv4 with
fine-tuning and feature selection outperforms the traditional
handcrafted texture descriptors.

IV. CONCLUSION AND DISCUSSION

This paper studied the transfer learning from a pretrained
AlexNet that for lung nodule classification. To enhance the
transferability, we applied fine-tuning and feature selection
techniques to retrain AlexNet and extract a useful feature
subset. The best classification accuracy of lung nodule was
achieved by fine-tuning Conv4 with feature selection. Our
results outperform two handcrafted texture descriptors.

Although recently proposed deep neural networks such
as GoogleNet [9] and ResNet [10] performed better than
AlexNet for ImageNet classification, AlexNet was used in our
experiments due to its simplicity and rich literature. It is also
interesting to apply other DNNs for lung nodule classification.
Instead of extracting high-level features from DNNs, ‘end-to-
end’ deep learning algorithms deserve further investigation for
lung nodule classification. We are working along these lines.
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