
Abstract—Metal artifact reduction (MAR) remains a hard 

problem with remaining limitations in image quality after more 

than three decades of study. Recent successes in deep learning 

achieve state-of-the-art performance for a range of extremely 

difficult and complex problems. In this work an application of 

deep learning to the problem of metal artifact reduction via 

estimation of missing data in the sinogram domain is investigated. 

Initial results obtained with projection data simulated from simple 

geometric objects show promising improvements in the quality of 

the estimated data in the sinogram, which is visually clearly 

superior to a linear interpolation approach. This improvement 

also translates into reduced streaking and banding artifacts in the 

corresponding reconstructed images. These encouraging results 

clearly demonstrate the potential of deep learning for addressing 

MAR and similar missing data problems. 

Index Terms—CT, Computed Tomography, Deep Learning, 

Metal Artifacts, MAR, Missing Data Estimation, Sinogram 

Completion, Sinogram Interpolation.  

I. INTRODUCTION

he field of Deep Learning is currently undergoing rapid 

growth, with state-of-the-art performances achieved in a 

range of fields, e.g., for image recognition [1], speech 

recognition [2], and other applications (see, e.g., [3] for an 

overview). Many recent advances in deep learning are 

addressing “big data”-type problems. Deep learning networks 

can -seemingly without careful engineering and domain 

expertise required by their designers- extract and model 

features of higher and higher complexity as the data propagates 

through the layers of the network. Due to this ability to discover 

intricate structures in large sets of high-dimensional data, deep 

learning has (potential) applicability in many domains in 

science and engineering as well as other fields.   

However, deep learning may also have a major impact in other 

areas of engineering and science where it has the potential to 

replace or augment existing carefully crafted algorithms that are 

designed to address various purposes. Specifically for the field 

of medical imaging this perspective has been laid out in [4]. 

In this paper we investigate the use of deep learning for the 

purpose of sinogram completion in CT, which has immediate 

applications to metal artifact reduction, but may also be used to 

address the effects of projection data truncation, etc.  
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MAR (metal artifact reduction) in CT has been a field of study 

for more than three decades (see [5] for an overview and 

additional references), but only recently some approaches have 

been introduced commercially. However, evaluation studies 

such as [6,7] show that their performance is still somewhat 

limited and further improvements in managing adverse effects 

of metal objects on image quality would be beneficial. 

Sinogram completion based methods form one of the main 

categories of MAR approaches from the published literature, 

with iterative methods representing the second main group. 

Sinogram completion (also referred to as sinogram-

interpolation, or in-painting) methods generally discard the 

projection data that corresponds to rays within the metal trace, 

and replace this “missing data” by an estimate. In an ideal case 

the estimated data represents a good approximation of 

projection data that reflects the entire shape and internal 

structure of the imaged object, with the exception only of the 

metal implant (or other metal object) itself. Specifically, 

structures within the object are typically represented 

(depending on the specific shape of the structure) by generally 

sinusoidal traces in the sinogram. The estimated data in the 

missing data region should appropriately reflect this 

characteristic behavior, otherwise the reconstructed image will 

be impacted by associated streaks or banding artifacts. In some 

instances, additional artifacts are created through the MAR 

processing that were not present in the image before correction 

[8]. 

In pure projection-based interpolation approaches the missing 

data is estimated based on interpolation within the sinogram 

domain (see, e.g., [9,10,11]), while some other sinogram 

completion approaches utilize an initial reconstruction (maybe 

using a few iterations) to produce a first estimate of the structure 

of the imaged object which (after re-projection) helps in 

obtaining an improved sinogram interpolation [12,13,14].   

In the approach that is presented in this paper we attempt to 

estimate missing data in the sinogram itself without employing 

an initial reconstruction step. Similar to the approach taken in 

other pure sinogram-based interpolation schemes we estimate 

in the current implementation the missing data for a single view 

(or a small set of adjacent views) from a detector region that is 

adjacent to the missing data region (i.e., from data 

corresponding to detector channels that are adjacent to the 
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missing data region on both sides), and from views 

corresponding to an angular interval around the current view 

angle. This estimation process can be implemented in a 

straightforward way as a simple fully connected neural 

network. 

This type of approach is reminiscent of recent work in single 

image super-resolution where the goal is to estimate a high-

resolution image from a down-sampled/low-resolution version 

of the same image. In [15] results that are superior to more 

traditional techniques have been obtained by a simple 

convolutional neural network (CNN) consisting of a set of 

analysis filters (as the first layer), followed by a mapping of the 

resulting feature maps into a mapped feature space (as a second 

layer), which is then followed by a second convolution with 

appropriate “synthesis filters” and summation of the resultant 

images (as a third and final layer).  

Inspired by this work the network in our initial approach as 

presented here also contains very few layers, where the first 

layer can be interpreted as an extraction of image features 

(which in our application are extracted from regions of the 

sinogram that are located adjacent to the missing-data region to 

be estimated), followed by a mapping of features and a 

“synthesis” of the missing data from the mapped features as the 

last layer. 

II. MATERIAL AND METHODS 

The sinograms used as training and validation data used in our 

work were generated using the Radon transform (i.e., simple 

line-integrals in a parallel-beam configuration) of simulated 2D 

objects consisting of superimposed ellipses with random 

orientation, size, aspect-ratio, and attenuation. For simplicity, 

the trace of the metal is assumed to be a band of constant width 

at the center of the detector, as would be created by a circular 

metal object at the center of the image region. (In the sinograms 

shown in this paper, the metal trace corresponds to a horizontal 

band in the sinogram.) Consequently, a central circular region 

in the original simulated image is replaced with the local mean 

value (with a smooth transition at the edges of the circular 

region) prior to creating the simulated projection data that is 

used for training. In this manner we avoid the projection data in 

the missing data region to contain image information that is due 

to structures that are located in the metal region of the object 

(and which therefore should not be used for training). 

Images are created with a size of 511x511 voxels, and a 

sinogram is created for view angles spanning 360 degrees, with 

a 0.5 degree separation between projections, resulting in a 

sinogram consisting of 720 views. The images contain a 

simulated circular metal region of diameter 45 voxels at the 

center of the image, and the missing data region in the resultant 

sinogram corresponds to a (horizontal) band of 45 detector 

channels. Image simulation as well as creation of projection 

data and reconstructed images was performed using Matlab’s 

radon and iradon functions. 

The deep learning network takes as input two patches of size 

81x21 in the sinogram, with one patch located on either side 

(top and bottom) of the missing data region. Each patch 

corresponds to an interval of 21 detector channels adjacent to 

the missing data interval on the detector, covering an angular 

range of +/-20 degrees relative to the considered view angle 

(i.e., from 40 views before to 40 views after the currently 

considered view angle). The corresponding output patch 

corresponds to an interval of 5 views (from two before to two 

after the current view angle), spanning the entire height of the 

metal trace (i.e., 45 detector channels). This geometry is 

illustrated in Figure 1, where a sinogram is shown (left), with a 

metal trace indicated by the horizontal white bar across the 

sinogram. An ROI of the sinogram (enlarged) is also shown, 

with the input patches (for a given considered view angle) 

indicated by blue rectangles, and the corresponding output 

patch is marked as a green rectangle. Figure 1 (right) also 

illustrates the network architecture used in our work, where in 

the first layer a set of 256 features (each corresponding to an 

analysis filter of size 81x21x2) is extracted, which is then 

mapped to a set of 192 features, where each of those mapped 

features is then propagated to the target patch in the missing 

data domain by using a 5x45 “synthesis” patch. With the 

 
Figure 1: Example sinogram with the metal trace shown as a white horizontal band at the center (left). At the center an ROI of 

a sinogram is shown, with data regions corresponding to the input (blue) and the output (green) of the deep learning network 

marked by rectangles. The diagram on the right depicts the architecture of the used network with two hidden layers. 
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exception of the last layer, each layer uses a ReLU (rectifying 

linear unit) non-linearity.  

The training of the network was based on about 30,000 datasets 

that were extracted from a set of 500 simulated objects and the 

associated sinograms.  

For evaluation, interpolated sinograms were generated from 

individual patch-based estimates by creating an estimate for 

each single view angle (using the trained deep learning 

network), and then performing a simple averaging of the 

resulting overlapping output patches. 

III. RESULTS

In Figure 2 we show results of ROIs of interpolated sinograms. 
Specifically, the central region of a sinogram containing the 

missing data region (a horizontal band with a height of 45 

detector channels) as well as the input data regions (bands 

above and below the missing data region, respectively, each 

with a height of 21 detector channels) is shown. For better 

visual evaluation, each interpolated dataset is shown in the 

context of the corresponding “ground truth” dataset (top), as 

well as a sinogram generated with simple view-by-view linear 

interpolation across the missing data interval (bottom). We can 

see that the sinogram interpolation created with the deep 

learning network achieves a much better “blending” with the 

adjacent known data bands, and is clearly superior in capturing 
and representing the characteristics of the data consisting of 

“superimposed sinusoidal traces”.  

In addition, for sinograms interpolated with our deep learning 

approach the reconstructed image was reconstructed. For 

reference, we also show the original image as well as a 

reconstruction obtained from a sinogram interpolated with 

simple view-by-view linear interpolation. These results are 

shown in Figure 3, where the top row shows the original image 

(left), the image reconstructed from the deep learning network- 
interpolated sinogram (center), as well as the image based on a 

linearly interpolated sinogram (right). The corresponding 

difference images (original – deep learning) and (original – 

linear interpolation) are shown in the bottom row (center, and 

right, respectively). Note the obvious reduction in streaking and 

banding artifacts for the image reconstructed from the deep-

learning network-interpolated sinogram. This is also reflected 

in a reduction of the RMS (root mean-squared error) of 37% 

(RMSE error of 0.039 for reconstruction from deep-learning 

network interpolated data vs. RMSE error of 0.063 for 

reconstruction from view-by-view linear interpolation across 

missing data region). The remaining artifacts seem to be mostly 
of a high-frequency nature, which may be due to limitations in 

the number of levels and number of neurons in the deep learning 

network. 

IV. DISCUSSION

The sinogram completion results that are presented in this paper 

demonstrate the potential of deep learning techniques to 

achieve good performance in addressing streak and banding 

artifacts due to metal in the field of view, with potential 

applicability to other missing data scenarios (e.g., truncation).  

Figure 2: Example ROIs of two sinograms. Each of the two images shows three subimages: a central section of the original 

(ground truth) sinogram at the top, the corresponding estimated (by deep learning) sinogram at the center and for comparison 
the sinogram with linear interpolation of the metal trace region at the bottom. Each subimage has a height of 87 pixels and 

contains the metal trace (horizontal band with a height of 45 pixels) at the center, and the adjacent bands (of 21 pixel height 

each) on which the estimation is based immediately above and below. Please note how the interpolation using the deep learning 

network performs much better in capturing and representing the sinusoidal character of the traces due to the structures of the 

imaged object. 
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Experiences from the deep learning community suggest that 

increasing the number of layers in the neural network has the 

potential to drastically improve performance (even when the 

total number of neurons is decreased). Indeed, for the single-

image super-resolution problem [15] that served as inspiration 

for the initial design of the network that we used here, a “very 

deep” convolutional network with dramatically improved 

performance was developed [16]. The performance achieved in 

our experiments may be limited further by the relatively small 

size of the input data patches. Further investigation and 

development of appropriate network architectures will address 

these limitations. 

Generalization of our approach toward potential applicability in 

practical patient scanning scenarios will also need to address 

the numerous simplifying assumptions that we made in this 

work. For example, the fact that the metal trace is assumed to 

be a straight horizontal band through the sinogram may be 

addressed by appropriately re-binning the projection data. Also, 

as currently implemented, the sinogram interpolation assumes 

a metal trace of a fixed and constant width. This may be 

addressed by appropriate interpolation, down- and/or up-

sampling, and other processing of the sinogram. Obviously, the 

case of multiple metal objects, where the traces intersect in the 

sinogram domain will also have to be addressed. 

Furthermore, as the trained deep learning network will reflect 

not only the pure missing data related limitations and artifacts 

but also the characteristics of the training data itself, the use of 

appropriate anatomically correct simulated data, and, 

ultimately, patient data (or simulations generated based on 

patient data) will be used for training and evaluation of the deep 

learning network.  
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