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Abstract—The MARS programme is developing spectral CT
scanners to advance medicine. Our system is built upon the
Medipix3RX ASIC developed by a CERN led collaboration. The
Medipix3RX has 8 counters where some counters use charge
summing technology to improve energy resolution. Our scanners
include small bore scanners, pre-clinical systems used by our
partners at the Mayo Clinic, Notre Dame University, and the
University of Otago, and a large bore scanner (a human scale
system in development). In this talk we demonstrate some of
the applications, and publicly available datasets, that show how
spectral CT can enhance pre-clinical and medical imaging. Our
primary challenge for the future is to improve our reconstruction
methods to generate artefact free, quantitative material volumet-
ric datasets for clinical use.

I. INTRODUCTION

The key scientific goal for the MARS programme is to
develop scanners that enable the exploration of spectral CT
images within medicine. In this paper, we present our current
systems and their capabilities. We describe a range of applica-
tions in active research and provide some public datasets that
demonstrate how spectral CT is useful in medical imaging.
Lastly, we briefly describe our current reconstruction approach
and discuss the challenges that we wish to solve in the near
future.

MARS currently has two systems: a small bore scanner
(used for current pre-clinical research), and a large bore scan-
ner (a human scale system in active development). Both types
share common design principles and common components
to ensure that biomedical results may be readily translated
between the two systems. Each system consists of three
main parts: a scanner containing an energy resolving camera,
an x-ray tube, a gantry to position the components, and a
sample bed to position the subject; a data processing chain to
reconstruct the spectral CT data and decompose the results into
materials; and a visualisation and analysis tool. The gantry and
sample bed differ in scale between the small and large bore
scanners.

The small bore scanner is in active use around the world
[1], [2]. The range of pre-clinical research that is ongoing
with MARS system includes: multi-contrast imaging in mice,
risk classification of atheromatous plaques, tumours in mice,
quantifying the health of cartilage, scaffold implants to pro-
mote bone growth, quantification of fat and soft-tissues in
meats, etc. These applications provide a wealth of MARS

spectral CT datasets, some of which have been made publicly
available including the raw, processed, and visualised data.
It is our hope that these datasets, together with those related
with this paper, can promote improvements in spectral CT
reconstruction algorithms to produce artefact free, quantitative
material volumetric datasets.

The reconstruction solution employed in the current MARS
system adopts a two-step approach. First, the data is recon-
structed into a series of attenuation volumes using common CT
reconstruction methods. These attenuation volumes are then
transformed via decomposition into a set of material volumes
representing density in mg/ml. While this approach produces
useful pre-clinical images, it leaves much to be desired.
The material decomposition step, when performed after the
reconstruction of attenuation volumes, has to contend with CT
artefacts such as beam hardening, and noise. We believe that
a one-step solution that reconstructs material volumes directly
from the raw photon counts has the best potential to achieve
high quality medical images.

Section II provides an overview of the MARS system.
Section III introduces a range of current applications explored
along with some datasets that are, or soon will be, publicly
available. Section IV describes the general approach of our
current reconstruction solution, and discusses the challenges
that we face. Lastly, we conclude the paper with an overview
of where we see spectral CT heading in the future.

II. MARS SYSTEM

A MARS system is a complete solution consisting of the
physical scanner, the image processing software, and the
visualisation and analysis software. Each of these components
are independent units. In this section, we describe the physical
scanner along with an overview of the visualisation software.

A MARS scanner consists of an energy resolving camera, a
standard x-ray tube, a gantry to position the camera and x-ray
tube, a sample bed to position the subject, and software to
control the operation and to interact with the user. There are
two designs of MARS scanners; the small bore, and the large
bore. The only difference between the two is the design of the
gantry and the sample bed. This means that results may be
readily translated between the two system designs.
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Fig. 1. A view of a MARS small bore scanner during assembly. The left
shows the cabinet opened along with the internal lead-lined container. Center
and right are two gantries in production revealing its structure, and the control
circuitry.

A. Energy resolving, photon counting cameras

A MARS camera contains multiple CZT-Medipix3RX de-
tector modules in linear arrays. These are photon counting de-
tectors that can discriminate between x-ray energies. Cameras
can range from 1 detector module to as many as are available.

Each Medipix3RX [3], [4] ASIC is bonded by Advacam
[5] to 2 mm of Redlen CZT [6](the sensor material) such
that the pixel pitch is 110 um. Together, they provide up to
8 energy bins of information. Typically, one bin provides the
total photon count, four more operate in charge summing mode
to improve the energy resolution, and the final three operate
in single pixel mode.

For each detector, a single ARM based computer and FPGA
performs the data readout. Within a single camera, each
detector readout operates in parallel, providing simultaneous
acquisitions across all detectors. Control and data transfer is
achieved via standard Ethernet technologies.

B. The gantry and the sample bed

The small bore system can support samples up to 100 mm
diameter and up to 270 mm length. It is embedded in a lead-
lined stainless steel container inside a cabinet to provide
a self-contained scanner that may safely operate anywhere.
Fig. 1 shows the internal structure of the small bore gantry.
The large bore gantry will be able to support samples up to
750 mm diameter, and up to 1200 mm length. As a human
sized scanner, it is installed in a lead-shielded room.

A typical scan follows a helical path. To accomplish this, the
gantry can rotate the camera and a 120kV x-ray tube around
the sample bed. It uses a slip ring to provide continuous Gb
Ethernet communication and power as it rotates. The camera
can also be translated across the gantry to span subjects of
greater diameter than its active length. For the small bore
design, magnification can be altered via motors for both the
camera and the x-ray tube. Alternatively, the magnification
adjustments are manual for the large bore design. Collimators
and x-ray filters are also motorized to restrict the x-ray beam

Fig. 2. MARS Vision 3D rendering: A mouse MD showing the separate
channels of fat, water, gold (lungs), gadolinium (intestines), and iodine(kidney
and bladder). Some material channels, such as water are transparent while
others are opaque. A 3D magic lens further enhances the view of the central
organs.

to the imaged volume, and to provide a selection of aluminium
and brass filters with a variety of thicknesses.

The sample bed is motorised to support continuous motion
in and out of the scanner. In the small bore scanners, the
sample bed can also move up and down, and left and right, to
better position the subject.

The scan obtains sets of 2D energy-resolved projection
images, Q(p, c, θ) where p labels the pixel, c labels the energy
counter, and θ labels the helical angle. These are automat-
ically pre-processed and stored in DICOM format [7]. This
makes the raw data compatible for transfer to an institutional
PACS. The 2D energy-resolved projection images are then
”reconstructed” into 3D energy-resolved volumetric datasets,
V (v, e) where v labels the voxel and e labels the energy
bin. Finally the data is transformed into material volumetric
datasets, X(v,m) where v labels the voxel and m labels the
material. All volumetric datasets V (v, e), and X(v,m) are
stored using DICOM.

C. MARS Vision

To visualise the MARS spectral CT data, a comprehensive
viewing and analysis tool has been developed called MARS
Vision. Visualisation techniques include standardised diagnos-
tic 2D slice views, 3D volume rendering, 3D mesh visualisa-
tion, and minimum and maximum intensity projection.

For both 2D and 3D rendering options, attenuation and
material channels can be fused into hybrid images. Typically,
attenuation channels provide context, while material channels
provide specific, quantitative information. A “Magic Lens”
tool allows sections to be displayed using a different set of
fused channels. Fig. 2 illustrates a MARS Vision 3D rendering
of a multi-contrast mouse showing a series of materials along
with a “Magic Lens” to highlight the central organs.

Measurement and analysis tools are supported as part of the
visualisation package. Both 2D and 3D regions of interest can
be created from primitive shapes (lines, angles, ellipses, and
polygons) and then analysed. This allows the basic radiology
workflow to function within MARS Vision.
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Fig. 3. The results from a scan of a cut of lamb meat. From the left is a photo of the sample, a slice from the attenuation volume, the water channel, the
calcium channel, the fat channel, and a volume rendering of the materials using a natural colour scheme.

MARS Vision also includes support for zSpaceTM [8], [9],
a 3D stereoscopic monitor that fuses head tracking, along with
a 3D stylus for a unique interactive experience. Stereoscopic
images are synchronised with the regular 2D slice views to
allow for an enhanced radiology workflow. Here, 3D manip-
ulation is achieved via the zSpace stylus to find appropriate
2D transverse planes, and analysis is then performed on these
2D planes with the standard mouse. This hybrid approach has
been tested with medical students and radiologists (residents)
and was found to be easy to learn and easy to use. It has been
shown to improve the accuracy of diagnosis [10].

III. APPLICATIONS OF MARS IMAGING

The MARS small bore system has already been used in a
wide range of pre-clinical research applications [11]. In this
section, we demonstrate a few of these applications. In some
cases, we have released complete datasets to the public domain
including raw and preprocessed projections, and energy and
material volumes.

A. Quantifying fat, muscle, and bone in meats

A large number of clinical issues and commercial industries
are interested in separating fat, muscle, and bone. As a
preliminary study of this problem, a slice of lamb was scanned,
and decomposed into fat, water (muscle), and calcium (bone).

Fig. 3 shows the results of the scan alongside a photo of the
sample. This image also illustrates the data output from the
MARS system. The attenuation volume slice shown reveals
all materials together as a standard CT image would. The
material volume slices show the output from the material
decomposition. Lastly, the 3D rendering shows the material
volumes together as a natural representation of the sample.
This dataset was published by Aamir et. al. in the Journal of
Instrumentation [12] and made public on http://hdl.handle.net/
10092/8531.

B. Health in cartilage and bone

A study of cartilage health aims to use spectral CT to
quantify the amount of glycosaminoglycans (GAG) [13]. The
current hypothesis is that the GAG content directly relates to
the health of the cartilage. It is also known that iodine tends
to diffuse to areas of low GAG content. Therefore, when an
iodine based contrast agent is used, the presence of iodine
indicates the lack of presence of GAG.

Fig. 4. A rendering showing the presence of iodine in a cartilage/bone sample
from a tibial plateau. Iodine is coloured as a gradient from blue (less) to red
(more). Bone is shown in greyscale. The red shades indicate the presence of
osteoarthritis (shown) in the middle of the sample.

Fig. 5. A rendering showing the interface between bone and a metal scaffold.
The left image focus is on the bone, while the right image focus is on the
scaffold. Both cases show a clear distinction between the two.

An initial study of quantifying GAG took a human excised
cartilage sample from the tibial plateau, saturated the sample
with Hexabrix (iodine), and then scanned the sample. The
material decomposition split the data into fat, water, iodine,
and calcium (bone). Fig. 4 shows the result when viewing the
iodine and calcium channels from the dataset. The image uses
a colour gradient (blue to red) to show where iodine has the
most presence. The image demonstrates that the MARS system
can be used to inversely map GAG content in cartilage.

Bone ingrowth to scaffolds is an important area of research
as many modern orthopedic implants are fixed in place by
bone growing through a porous surface. Studying the bone-
scaffold interface is important in designing new implants. Key
information is good imaging at the bone/metal interface and
quantification of calcification of the bone as it grows. Fig.
5 illustrates the results from an implant of a scaffold into a
section of bone that demonstrates that the bone/metal interface
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Fig. 6. A rendering of a spectral phantom (right) containing concentrations
of gold (yellow), gadolinium (green), iodine (red), calcium (white) alongside
water (blue) and lipid (purple). This image demonstrates that high Z materials
can be identified down to at least 2 mg/ml.

is clearly revealed.

C. Separation of High-Z materials

Various studies are ongoing that aim to separate multiple
contrast agents in a single scan. In this example, concentrations
of four high Z materials alongside water and lipid positioned
in a 12 hole phantom and scanned. The high Z material
concentrations include gold (2, 4, and 8 mg/ml), gadolinium
(2, and 8 mg/ml), iodine (4.5, 9, and 18 mg/ml), and calcium
(200 and 800 mg/ml) in hydroxyapatite. Fig. 6 demonstrates
the outcomes of the study. As can be seen all of the materials
have been correctly identified with some minor issues at the
lowest concentrations of gold, gadolinium and iodine. Such
studies are also often used to calibrate the system for biological
scans, such as the multi-contrast mouse shown in Fig. 2.

A similar study was published together with data by
Moghiseh et al [14]. In this case, the study investigates the
quality of the material separation and shows how well each
concentration is identified and misclassified.

IV. SPECTRAL CT RECONSTRUCTION AND MATERIAL
DECOMPOSITION

Spectral CT reconstruction presents a new set of opportu-
nities and challenges for medical imaging. In this section, we
outline our current approach and discuss its shortcomings and
strengths.

A. MARS image processing chain

The current image processing is achieved through a chain
consisting of five algorithms over two programs. The first

program is the reconstruction software that takes raw data (in
the form of scan data, flat-field data, and a mask) and converts
it to a set of attenuation volumes as functions of energy. This
includes four algorithms for flat-field correction, inpainting,
ring filtration, and spectral CT reconstruction. The second
program is a dedicated piece of software for the material
decomposition algorithm that converts the attenuation volumes
to a set of material volumes.

The raw data represents photon counts from the 8 counters
in the Medipix detector. Each counter’s energy range extends
from a set low threshold to a common kVp set for the x-
ray tube. This means that the raw data represents a set of
overlapping broad energy bins.

The mask is a map that indicates the reliability of each
pixel from each detector in the camera. It is derived from
pixel measurements made prior to the scan. Using the mask,
faulty pixels may be removed.

The flat-field data represents open beam counts for the same
selection of energy bins, and the same selection of camera
positions over the scan. Flat-field correction uses a standard
algorithm of dividing the raw data by the corresponding flat-
field data to correct for inter-pixel variation and variation over
the x-ray beam. A global mean flat-field count per energy bin
then returns the corrected raw data back to counts.

The inpainting algorithm uses a series of small median
filters to fill in small regions of dead pixels. Its only mandate
is to slightly improve the condition of the data before ring
filtration. Large dead regions remain untouched.

The ring filtration algorithm uses two directional median
filters. The first median filter covers a local “cross-shaped” re-
gion in the projection images to detect the difference between
a pixel and its neighbours (the potential error of the pixel). The
second median filter is a 1D filter between projection images
(or along the angle axis of the sinogram) to find the static
error of the pixel. This static error is then subtracted from the
data to yield a cleaner result.

The reconstruction algorithm uses an iterative, one-step
approach to reconstruct a set of adjacent, non-overlapping
attenuation volumes from the raw overlapping broad energy
bins. The raw data is not subtracted in any way before
or during reconstruction. This approach means that the raw
energy bins influence multiple attenuation volumes, and this
has an averaging effect on the noise. In essence, it exploits the
fact that although the energy signal is unique to each energy
bin, the geometric signal (where boundaries are located) is
identical for all energy bins. The iterative algorithm used is
based on ordered subsets expectation maximisation [15].

The reconstruction algorithm also adopts a multi-stage ap-
proach where it initially reconstructs voxels that are 8 times
larger than requested. Later on this is repeatedly subdivided,
for a total of four stages, until the requested voxel size
is reached. This approach allows for the reconstruction to
proceed quickly. It is also is a weak form of a sparsity
constraint as a large voxel is the same as a set of small
voxels with the same value. Lastly, the larger the voxel, the
more pixels from the projection images will contribute to
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it. This means that the presence of dead regions will have
less of an effect. This is particularly useful during the initial
reconstruction stages where the effects of dead regions are the
most significant.

The material decomposition algorithm adopts a combina-
torial approach. It defines a set of acceptable material rela-
tionships (such as permitting water and iodine in the same
voxel but not iodine and gold) and best fits the data to it.
The calibration for these relationships is derived from scans
of known phantoms.

B. Challenges

In section III, we demonstrated some applications that show
how the our current results already benefit pre-clinical research
by providing novel information in medical imaging. However,
it is clear that much more can be done.

The approach to material imaging that we have taken can be
described as a post-reconstruction solution. This means that the
data is converted to attenuation volumes and then decomposed
to material volumes. This has a few drawbacks.

Firstly, any noise and blurring in the attenuation volumes
will hinder the material decomposition result. This is particu-
larly an issue with blurring where the outlines of objects can be
misclassified. In order to reduce the affects of noise, denoising
algorithms can be used. However, this simply increases the
issues of misclassification at object boundaries.

However, the biggest issue is the artefacts due to beam hard-
ening (streaks and cupping). The use of narrow adjacent, non-
overlapping energies reduces the impact of beam hardening,
but the effects are still strong for dense materials. It would be
possible to invest in a beam hardening correction algorithm.
However, as beam hardening is actually the novel part of the
spectral CT signal, any reduction of that signal brought about
through a monochromatic approximation would be an inferior
solution.

An alternative approach considered by many others (see,
for example [16], [17]), is some form of pre-reconstruction
material decomposition. This would split the projection data
into materials and then reconstruct the material projections into
material volumes. This has the advantage that polychromatic
methods could be employed to eliminate beam hardening
completely.

Pre-reconstruction approaches suffer from two major draw-
backs. Firstly, they usually operate on a per-pixel basis in
the projection space (or a local region). This means that the
full effect of the noise in the pixel would have to be dealt
with. In comparison, a voxel is the accumulated result from
a large number of rays. Therefore, the number of photons
contributing to a voxel value is significantly higher, and the
noise, significantly less.

The second major drawback is the lack of sparsity con-
straints. The number of materials in a voxel is generally
limited. However, the number of materials in a ray is not.
Therefore, pre-reconstruction methods can not directly exploit
the available material sparsity to better focus on more accurate
solutions.

The final option is a one-step approach to directly convert
from the raw photon counts to material volumes. This ap-
proach would allow the best of both worlds as sparsity con-
straints can be fully employed, and polychromatic algorithms
could be developed. Naturally, there is a drawback in that such
an approach is complex. It is challenging to find a solution that
both works, and is efficient enough to operate in a commercial
research or clinical setting.

V. CONCLUSION

The MARS team has developed a complete suite of tools for
research into spectral x-ray imaging. These tools include the
scanner (small bore and large bore designs), CT reconstruction
and material decomposition algorithms, and visualisation and
analysis software. The system is already capable of supporting
pre-clinical research and has done so for a variety of studies
around the world. In the case of the lamb meat study, the data
was made public some years age to support further research
into spectral CT reconstruction algorithms and visualisation
techniques. We provide further more recent datasets with the
publication of Rajendran et. al’s article in the Journal of
Instrumentation [18]. The four datasets from this paper are
available at http://hdl.handle.net/10092/8851.

The reconstruction and material decomposition algorithms
currently used are effective for some pre-clinical applications.
It achieves this via a post-reconstruction material decom-
position solution. In a one-step process, the reconstruction
simultaneously generates a set of adjacent, non-overlapping
attenuation volumes (as functions of energy bins) directly from
the set of projection images using the raw overlapping energy
bins of a Medipix3RX ASIC. The material decomposition then
converts the set of attenuation volumes to material volumes.
However, it is clear that much more could achieved if better
algorithms were to be discovered and used. Currently, we feel
that a one-step algorithm from raw data directly to material
volumes would have the most potential in producing artefact
free, quantitative images.

Throughout this paper, we have shown the final output of
our system to be quantitative material volumes represented
in mg/ml. We strongly feel that material volumes are the
future for CT datasets as they are both highly specific, and
directly relate to simple physical measurements. In addition,
as the relationship between attenuation and density is linear,
attenuation volumes for monochromatic energies can always
be derived from material volumes. So traditional clinical meth-
ods can always be used, and more importantly, new methods
can be established. Therefore, we feel that the challenge
of generating accurate, clean material volume images is the
primary challenge for CT today.
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