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Abstract—Dual spectral computed tomography (DSCT) has
a superior material distinguishability than the conventional
single spectral computed tomography (SSCT). However, the
decomposition process is an illposed problem, which is sensitive
to noise. Thus, the decomposed image quality is degraded,
and the corresponding signal-to-noise ratio (SNR) is much
lower than that of directly reconstructed image of SSCT. In
this work, we establish a local linear relationship between
the decomposed results of DSCT and SSCT. Based on this
constraint, we propose an optimization model for DSCT and
develop an iterative method with image guided filtering. Both
numerical simulations and real experiments are performed to
validate the effectiveness of the proposed approach.

Index Terms—local linear constraint, optimization model, im-
age guided filtering, dual spectral computed tomography.

1. Introduction

In X-ray dual spectral computed tomography (DSCT),
also known as dual energy computed tomography (DECT),
a specimen is scanned with two different X-ray energy spec-
tra. The collected polychromatic projections from this pro-
cedure are utilized to perform energy- and material-selective
reconstructions [1], [2]. Compared with the conventional
single spectral computed tomography (SSCT), DSCT has
a superior material distinguishability. Therefore, it has wide
applications in both medical and industrial domains [3], [4],
[5], [6].

Existing methods to perform decomposition of DSCT
can be classified into three groups: image based methods,
projection based methods, and iterative methods. Image
based methods treat the projection data sets of different
spectra as being independent until the images are recon-
structed. Images from all spectra are linearly combined to
obtain two decomposed images [7]. Because such meth-
ods fail to describe the real nonlinearity relationship be-
tween decomposed results and polychromatic projections,
the decomposition results will suffer from artifacts [3], [8].
Projection based methods treat the available information by
passing the projection data through a high order decompo-
sition function, followed by image reconstruction [9], [10].
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Generally speaking, they can obtain better decomposition
results than image based ones. However, the combination of
polychromatic projections requires satisfying a geometrical
consistency. Several iterative methods are proposed based
on statistical models and nonlinear optimizations [11], [12],
[13]. By introducing prior knowledge or establishing an
approximate model, these methods improve the decomposed
image quality effectively. However, their convergence rates
are slow and the computational cost is high. Recently, an
extended algebraic reconstruction technique (E-ART) for
DSCT was proposed by Zhao et al. [14]. It describes the
DSCT reconstruction as a nonlinear system problem, and
extends the classic ART method to solve the model itera-
tively. While it can produce high quality decompositions,
the convergence rate is slow, either. Hu et al. extended the
E-ART method into an simultaneous version, i.e. E-SART
[15]. This method is based on the matrix inversion and has a
high degree of parallelism. Thus, the convergence speed of
its parallel implementation is improved dramatically. But,
the illposedness of the decomposition process renders it
noticeably sensitive to noise, resulting in reduced signal-
to-noise ratio (SNR).

Although SSCT has weaker capability for material dis-
tinguishing, the achieved SNR is dramatically higher than
that of DSCT. Moreover, there is an interesting relationship,
i.e., decomposed results of DSCT can be viewed as mod-
ifications of reconstructed images of SSCT by removing
some components and adjusting gray values. Further, this
structure-based feature can be mathematically described as
a local linear relationship. By incorporating this constraint
into an optimization model, the reconstructed image of
SSCT could work as a reference to effectively improve
the smoothness of decomposed results of DSCT. Thus,
the systematic noise is well suppressed and the quality of
decomposed results is considerably improved.

The remainder of this paper is organized as follows. In
section 2, the mathematical model of DSCT is presented,
and the E-SART method and the image guided filtering
technique are briefly reviewed. In section 3, we present
the local linear constraint based optimization model for
DSCT and develop an iterative method with image guided
filtering. In section 4, both numerical simulations and real
experiments are performed to verify the effectiveness of the
proposed methods. In last section, we discuss some related

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

352

June 2017, Xi'an

DOI: 10.12059/Fully3D.2017-11-3112006



issues and conclude this paper.

2. Theorical Methods

2.1. Mathematical Model of DSCT

By considering the fact that X-ray spectrum is polychro-
matic and assuming that collected raw data are geometrically
consistent, we describe the physical process of DSCT as
follows,

Pk,l = − ln

∫

E

Sk(E) exp
(

− Pl(µ(E,x))
)

dE, l ∈ L, k = 1, 2, (1)

whereµ(E,x) is the linear attenuation coefficient of a spec-
imen at a spatial positionx and energyE, Pl(·) represents
the ray transform which is an integral transform along a ray
path l, Sk(E) is the k-th normalized emission spectrum,
Pk,l indicates the acquired information frequently named
projection data.

In DSCT, µ(E,x) is usually considered splittable with
respect to variablesE andx,

µ(E,x) =
2

∑

i=1

ψi(E)fi(x), (2)

whereψi(E) is a function of energy andfi(x) is a function
of position. There are commonly two physical explanations
for eq. (2): basis material based decomposition and effect
based decomposition. For the former,ψi(E) is the mass
attenuation coefficient for materiali, andfi(x) is the correl-
ative density distribution. For the latter,ψ1(E) = E−3 and
ψ2(E) = KN(E) (Klein-Nishina function) corresponds to
the photoelectric effect and Compton scattering respectively,
andfi(x) represents the correspondingly effect distribution.
The aim of DSCT is to reconstruct images of distribution
functionsfi(x), i = 1, 2.

2.2. E-SART Method

By substituting eq. (2) into eq. (1) and discretizing the
correlative result, we get

Pk,l = − ln
(

Jk
∑

j=1

Sk,j exp
(

−
2

∑

i=1

ψi,jPl(fi)
)

∆E
)

, (3)

where Jk is the energy bin number of spectrumk, ∆E
represents the bin length,Sk,j andψi,j are the samplings of
Sk(E) andψi(E) within bin j, andfi is a one dimensional
column vector representing the discretized distribution func-
tion. The 1st order Taylor expansion of eq. (3) at point
(f1(n); f2(n)) is

Pk,l ≈ Pk,l(n)+
(

Ψ1
k,l(n)

Qk,l(n)
,
Ψ2

k,l(n)

Qk,l(n)

)

(

P(f1 − f1(n))
P(f2 − f2(n))

)

, (4)

wheren indecates the current iteration step and

Pk,l(n)=− ln

Jk
∑

j=1

Sk,j exp
(

−
2

∑

i=1

ψi,jPl(fi(n))
)

∆E,

Qk,l(n)=

Jk
∑

j=1

Sk,j exp
(

−
2

∑

i=1

ψi,jPl(fi(n))
)

∆E,

Ψ1
k,l(n)=

Jk
∑

j=1

ψ1,jSk,j exp
(

−
2

∑

i=1

ψi,jPl(fi(n))
)

∆E,

Ψ2
k,l(n)=

Jk
∑

j=1

ψ2,jSk,j exp
(

−
2

∑

i=1

ψi,jPl(fi(n))
)

∆E.

Along each ray path, two projections are acquired based
on different X-ray spectra. By solving the system of linear
equation (4), fork = 1, 2, we can get the projection of
distribution function in an iteration form,

(

P(f1(n + 1))
P(f2(n + 1))

)

=

(

P(f1(n))
P(f2(n))

)

+
Cl(n)

det(Ml(n))

(

P1,l − P1,l(n)
P2,l − P2,l(n)

)

,

where

Ml(n) =





Ψ1
1,l(n)

Q1,l(n)
,
Ψ2

1,l(n)

Q1,l(n)
Ψ1

2,l(n)

Q2,l(n)
,
Ψ2

2,l(n)

Q2,l(n)



 , Cl(n) =





Ψ2
2,l(n)

Q2,l(n)
,−

Ψ2
1,l(n)

Q1,l(n)

−
Ψ1

2,l(n)

Q2,l(n)
,
Ψ1

1,l(n)

Q1,l(n)



 .

By using the conventional Simultaneous Algebraic Recon-
struction Technique (SART), distribution functionf1 andf2
are updated iteratively.

Comparing with E-ART, the parallel implementation
of E-SART improves the convergence speed dramatically.
However, the illposedness of the inverse problem renders
this matrix inversion based decomposition process sensitive
to inevitable systematic noise. Thus, some prior knowledge
or constraints are needed to improve the robust against noise.

2.3. Image Guided Filtering

Guided filter [16], [17] is edge-preserving with a great
variety of applications, of which the key assumption is a
local linear model between a reference imageI and the
filtering outputy,

yi = akIi + bk, ∀i ∈ ωk, (5)

whereωk is a window centered at the pixelk, (ak, bk) are
some linear coefficients constant inωk. Modeling the output
y as the inputx removing some unwanted noise or textures
t:

yi = xi − ti.

Thus, by minimizing the difference betweeny andx within
a window ωk while maintaining the linear model (5), the
correlative optimization model is established as follow,

min
(ak,bk)

∑

i∈ωk

(

(akIi + bk − xi)
2 + ǫa2k

)

,
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where ǫ is a regularization parameter penalizing largeak.
The solution given by [17] reads,

ak=

1
|ω|

∑

i∈ωk
Iixi − νkx̄k

σ2
k + ǫ

,

bk=x̄k − akνk,

whereνk and σ2
k are the mean and variance ofI in ωk, |ω|

is the number of pixels inωk, andx̄k is the mean ofx in ωk.
The filtering outputy can be computed by employing eq.
(5). Because a pixeli is involved in all the covered windows,
by averaging all the possible output values, we get

yi = āiIi + b̄i.

Here āi and b̄i are the average coefficients of all windows
covering pixeli. By using the image guided filtering, input
x is refined by the reference imageI based on the local
linear relationship between them.

3. Algorithm Development

3.1. Local Linear Constraint based Optimization
Model

Although the directly reconstructed images of SSCT
have a weak capability to distinguish materials, the quality
is significantly better than the decomposed results of DSCT,
especially when the noise level is relatively high. Moreover,
there are structure-based relationships between them. An
intuitionistic character is that decomposed results of DSCT
can be viewed as modifications of reconstructed images of
SSCT by removing some components and adjusting gray
values. When analyzing this feature in detail, as is illustrated
in Fig. 1, we find that a linear relationship usually hold in
small patches, and its discrete version reads,

f (j) = a(k)g(j) + b(k), ∀j ∈ ω(k),

wheref represents a decomposed result of DSCT,g repre-
sents a reconstructed image of SSCT, andj andk are pixel
indexes.

Based on this constraint, we proposed an optimization
model for DSCT as follows,

min
(f1,f2)

{

∥

∥

∥

(

P(f1) − P(f1(n))
P(f2) − P(f2(n))

)

−
Cl(n)

det(Ml(n))

(

P1,l − P1,l(n)
P2,l − P2,l(n)

)

∥

∥

∥

2

L2

+

2
∑

i=1

∑

k

∑

j∈ω
(k)
i

ξi

|ωi|

(

(

a
(k)
i

g
(j)
fi

+ b
(k)
i

− f
(j)
i

(n)
)2 + ǫi(a

(k)
i

)2
)

}

,(6)

where gfi is a selected result of SSCT corresponding tofi,
ξi and ǫi are regularization parameters.

In model (6), for each searched-for decomposed result,
we employ a correlative local linear constraint. Thus, the
smoothness knowledge from SSCT is effectively introduced
into the decomposition process. By weakening the illposed-
ness, the noise is noticeably suppressed, and SNR is dra-
matically improved.

3.2. Iterative Reconstruction Algorithm

Considering the facts that the data term is measured in
projection domain and the regularity terms are measured in
image domain, we split model (6) into two sub-optimization
problems and develop an iterative scheme as follows,
(

P(f1(∗)),P(f2(∗))
)

=

min
(

P(f1),P(f2)
)

∥

∥

∥

(

P(f1) − P(f1(n))
P(f2) − P(f2(n))

)

−
Cl(n)

det(Ml(n))

(

P1,l − P1,l(n)
P2,l − P2,l(n)

)

∥

∥

∥

2

L2

,

(7a)
(

f1(∗), f2(∗)
)

= P
−1(

P(f1(∗)),P(f2(∗))
)

, (7b)
(

ai(n + 1)), bi(n + 1))
)

=

min
(ai,bi)

∑

k

∑

j∈ω
(k)
i

ξi

|ωi|

(

(

a
(k)
i

g
(j)
fi

+ b
(k)
i

− f
(j)
i

(∗)
)2 + ǫi(a

(k)
i

)2
)

, (7c)

ā
(k)
i

(n + 1) =
1

|ωi|

∑

j∈ω
(k)
i

a
(j)
i

(n + 1), (7d)

b̄
(k)
i

(n + 1) =
1

|ωi|

∑

j∈ω
(k)
i

b
(j)
i

(n + 1), (7e)

fi(n + 1) = āi(n + 1)gfi
+ b̄i(n + 1), (7f)

where āi(n + 1) and b̄i(n + 1) are the averagedai(n +
1) and bi(n + 1) within the windowωi, eqs. (7c)-(7f) are
implemented fori = 1, 2, respectively. We use the E-SART
method for eqs. (7a) and (7b), and the image guided filtering
for eqs. (7c)-(7f).

4. Experimental Results

To verify the effectiveness of the proposed method,
experiments are performed with both simulated and real
data sets. In the numerical simulations, both noise-free and
noisy cases are tested. Fan beam geometry is assumed for
all the experiments for simplicity. As a comparison, we
implemented the E-SART method as well. We employ all the
methods for the case of basis material based decomposition,
which can be easily extended to the effect based case.

4.1. Numerical Simulations

The phantom is 2D FORBILD head phantom without
ears shown in Fig. 1 [18]. Water and bone are chosen as
two basis materials, and the corresponding mass attenuation
coefficients are retrieved from the National Institute of Stan-
dard Technology (NIST) tables [19]. A polychromatic spec-
trum of a GE Maxiray 125 X-ray tube is simulated by using
an open source X-ray spectra simulator, SpectrumGUI [20].
Two tube voltages, 80 kV and 140 kV, are chosen, where
the latter is filtered with 1.0 mm copper. The correlative
spectra are shown in Fig. 2. The energy of photons emitted
from the source is 8 MeV. The detector consists of 512
channels with length 0.3 mm. The source-object distance
(SOD) is 1000 mm and the source-detector distance (SDD)
is 1200 mm. With this configuration, 512× 512 images are
reconstructed with a pixel size of0.249× 0.249 mm2.

Under this setting, we test the noise-free case and the
noisy case by using the E-SART and the proposed method,
respectively (see Figs. 3 and 4). Moreover, three common
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Figure 1. Illustration of the local linear relationship. Image directly reconstructed from single spectra is shown in the middle column, dual spectra based
decomposed results are shown in the left (bone density) and the right (water density) columns.
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Figure 2. The X-ray spectra used in the numerical simulations.

image quality evaluations are employed, i.e., peak signal-
to-noise ratio (PSNR), normal mean absolute deviation
(NMAD) and structural similarity (SSIM). The correspond-
ing results are shown in Tables 1 and 2. For both methods,
the iteration number is fixed to 6. All the experimental
results demonstrate the merits of noise tolerance for the
proposed method.

TABLE 1. PSNR, NMADAND SSIM OF NUMERICAL SIMULATION

RESULTS FROM NOISE-FREE PROJECTIONS.

PSNR NMAD SSIM

Bone density
E-SART Method 17.8298 0.516727 0.928197

Proposed Method 18.3021 0.507613 0.941834

Water density
E-SART Method 13.2118 0.424380 0.670655

Proposed Method 15.9604 0.309683 0.799645

70 KeV µ-image
E-SART Method 22.1476 0.147212 0.684622

Proposed Method 26.2219 0.064983 0.822715

TABLE 2. PSNR, NMADAND SSIM OF NUMERICAL SIMULATION

RESULTS FROM NOISY PROJECTIONS.

PSNR NMAD SSIM

Bone density
E-SART Method 17.5202 0.530706 0.921841

Proposed Method 17.8209 0.523427 0.93074

Water density
E-SART Method 13.2000 0.422779 0.665225

Proposed Method 15.9502 0.311418 0.850024

70 KeV µ-image
E-SART Method 21.8233 0.155406 0.673225

Proposed Method 26.4040 0.051748 0.875444

4.2. Real Experiments

In thereal experiment, the measured specimen is a bone
submerged in water. An X-ray source (YXLON Y.TU450
D09 tube) is operated at the tube voltage of 80 kV and
140 kV for low- and high-energy spectra scan, respectively.
The tube current is 5 mA. The employed flat-panel detector
(YXLON Y.LDA detector) has1920 × 1920 detector cells
with mesh size of 0.127 mm. The SOD is 231.5 mm and the
SDD is 696.7 mm. By using a collimator, the data from the
central slice are obtained to validate the proposed method.
The iteration number is 10.

The decomposed results by using the E-SART method
and the proposed method are shown in Fig. 5. It is noticeable
that the proposed method can effectively suppress the noise
and dramatically improve the smoothness.

5. Discussion and Conclusion

In this work, we establish a local linear constraint
to describe the structure relationship between dual spec-
tra based decomposed results and single spectrum based
reconstruction. A correlative optimization model and an
iterative algorithm are proposed, respectively. By employing
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Figure 3. Numerical simulation results from noise-free projections.

Figure 4. Numerical simulation results from noisy projections.
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Figure 5. Real experiments by using the E-SART method (the first row) and the proposed method (the second row).

the image guided filtering, the smoothness knowledge of the
single spectrum based image is effectively introduced into
the decomposition process. Because this method reduces the
illposedness of the DSCT, the noise in the decomposition
process is significantly suppressed. Both numerical simu-
lations and real experiments demonstrate the merits of the
proposed method.

On one hand, the proposed method suppresses the noise
effectively, and the quality of decomposed results is dra-
matically improved. On the other hand, it maintains the
merits of fast convergence rate of the E-SART. Further
quantitative analyses and comparisons are needed to choose
a satisfactory reference image, which will be fully studied
in our future work.
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