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Abstract—Nowadays, X-ray computed tomography (CT) has 

been widely used in the early detection and accurate diagnosis of 

various diseases. However, the inherent side effect of CT radiation, 

relating to cancer and other diseases, has caused great concerns in 

radiology. So how to reduce radiation dose immensely while 

maintaining image quality is a major challenge in CT imaging 

field. As a practical application of compressed sensing theory, the 

sparse constraint term referred to total variation (TV) 

minimization has already produced promising images for low 

dose CT reconstruction. However, the piecewise constant 

assumption of TV model often produces blocky artifacts in 

reconstructed images. To eliminate this drawback, we apply a 

family of hyperbolic tangent functions to enhance the sparse 

representation of TV model. Furthermore, a dynamic 

regularization term is also introduced to improve the 

performance of the proposed model. In our method, the proposed 

constraint term is incorporated into an objective function in a 

statistical iterative reconstruction (SIR) framework. We evaluate 

the proposed method using X-ray projections collected from 

simulated phantoms and scanned mice. And the results show that 

the presented approach can produce better images when 

compared to several existing methods in terms of lower noise and 

more anatomical features. 

I. INTRODUCTION

OWADAYS, X-ray computed tomography is undoubtedly

an effective and reliable tool and widely used in hospitals 

for diagnosis and intervention. However, the overdose of X-ray 

radiation possibly increases the risk of cancer and other genetic 

diseases. Therefore, the radiation risk issue has attracted more 

and more research attention. Using the low-dose scan protocols 

can be the most straightforward and pragmatic solution [1]. 

Since X-ray imaging is a quantum accumulation process, the 

signal-to-noise ratio (SNR) depends on the X-ray dose 

quadratically. Hence, given the noisy measurements, the 
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images reconstructed via conventional analytical 

reconstruction methods will suffer from increasing noise and 

artifacts. Another approach is to produce insufficient projection 

data, which will lead to limited-angle, few-view, interior scan, 

or other problems [2, 3].  

To reconstruct images from noisy and insufficient 

measurements, various image reconstruction approaches have 

been extensively investigated. Among them, statistical iterative 

reconstruction (SIR) methods for X-ray CT use realistic models 

that incorporate the statistical properties of the noise and the 

imaging geometry of the data acquisition [4-7]. Compared to 

the conventional filtered back-projection (FBP) reconstructions, 

SIR methods provide improved spatial resolution and noise 

properties, along with other potential advantages such as 

reduced patient dose and artifacts. Usually, the cost functions of 

the SIR methods contain two components, i.e., the data-fidelity 

term and regularization term. The data-fidelity term models the 

statistical properties of the noise and is prerequisite for the 

success of the SIR methods in clinical applications. The 

regularization term reflects the prior information of the 

reconstructed image aiming to regularize the solution. Recently, 

compressive sensing (CS) based regularization designs have 

become popular, and have been widely used for X-ray CT 

reconstruction from incomplete and noisy datasets. A typical 

example is TV regularization via the discrete gradient 

transform (DGT). Extensive studies have shown that 

high-quality CT image can be reconstructed via TV 

minimization from insufficient and noisy acquisitions without 

producing obvious artifacts [8]. However, the DGT operation 

cannot distinguish between true structures and image noise. 

Consequently, the image reconstructed via TV regularization 

may lose detailed features and lead to noticeable patchy 

artifacts. Hence, it is imperative to investigate superior 

sparsifying methods for CS-inspired image reconstruction. 

It is well-known that the l0 norm regularization can provide a 

sparser representation than the TV regularization (l1 norm). 

However, the application of l0 norm in image reconstruction is 

often a non-deterministic polynomial-time (NP) hard problem 

due to the fact that the l0 norm is a non-convex function in 

discontinuous form. Therefore, several alternatives have been 

proposed to obviate this drawback. The first idea of reweighted 

TV (RWTV) originates from the effort of minimizing a 

concave function that approximates the l0-norm, which can 

eventually be converted to solve a sequence of reweighted 
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l1-norm problems [9]. The RWTV approach can be easily 

solved, but may lead to over-smoothing edge details. Other 

approximate options including tunable fractional order norm, 

are simply expressed, but may lead to complicated parameters 

estimation [10, 11]. Recently, a sparse representation method 

via smoothed l0 (SL0) approximation has attracted an 

increasing interest in the signal processing fields. In order to 

deal with the discontinuities in the l0 norm, a family of 

continuous functions can be summed up to approximate the l0 

norm [12]. In this study, we use a family of hyperbolic tangent 

functions to enhance the sparse representation of TV model. 

Furthermore, a flexible modulation parameter is also 

introduced to implement dynamic regularization constraint.  

In this work, we propose a hyperbolic tangent enhanced total 

variation (HTETV) model and incorporate it into an objective 

function in the SIR framework to address the low-dose CT 

reconstruction problem. The rest of this paper is organized as 

follows. We firstly review SIR algorithm and then detail the 

proposed HTETV regularization, the associative optimization 

algorithm, and the parameters setting. After that, a series of 

experiments are performed and corresponding discussions are 

given. Finally, there is a brief conclusion at the end of this 

paper. 

II. METHODS 

A. Statistical iterative reconstruction

According to previous work [4], the SIR problem is

equivalent to the following minimization. 
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w y r y  is the statistical weight;  is a regularization 

parameter to balance the log-likelihood and penalty terms. 

B. The proposed HTETV regularization

According to the CS-based reconstruction theory, the

l0-norm is simply expressed the number of nonzero components 

in x , and is given by, 
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Despite Eq. (2) offers the highest possibility of sparse 

recovery with few measurements, some problems still exist in 

searching for a solution with minimal l0 norm. It is usually 

stated in the literature that searching the minimum l0 norm is 

NP-hard, and it is too sensitive to noise (because any small 

amount of noise can change the number of zero components 

significantly). The problems of using l0 norm (that is, NP-hard 

and too sensitive to noise) are both due to the fact that the l0 

norm of a vector is a discontinuous function. In order to deal 

with the discontinuities in
0

x . Our idea is to approximate this 

discontinuous function via a suitable continuous one, and 

minimize it by means of a minimization algorithm for 

continuous functions (e.g. steepest decent method). 

Furthermore, a flexible modulation parameter (say ) is also 

introduced to determine the approximation degree. In this study, 

the family of hyperbolic tangent functions is considered and 

can be expressed as 
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Fig. 1.  Comparison of the proposed regularization functions and the l0 

regularization function. 

It is clear from Fig.1 that
0

( )x F x


 , for small values of , and 

the approximation tends to equality when 0  . Consequently, 

we can find the minimum l0-norm solution via minimizing the 

substituted function ( )F x


. 

In the 2D image space, the image TV model can be defined 

as 

1
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where  is a dynamic regularization parameter used to 

determine the smoothness of the function ( )R x . The larger value 

of   produces the smoother ( )R x , which will result in worse 

approximation to l0 norm; the smaller value of   offers the 

better behavior of ( )R x close to l0 norm, but speckle noises may 

appear in the final reconstructions.  

C. Optimization algorithm

There are two key components for the optimization scheme

of the proposed cost function. The first component is the SIR 

process that enforces the statistical knowledge. The second 

component is the HTETV based sparse representation. In this 

paper, we first use the separable paraboloid surrogate method to 

minimize the log-likelihood term 
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where the superscript 1,2,...t   is the iteration number. In step 

two, the gradient descent method is used to minimize the 

proposed HTETV model. According to the derivation rule of 

the compound function, the derivative of HTETV is defined as 
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where  is a small positive number (10
-8

 in our experiments), 

which prevents the derivative being singular in smooth regions. 

Therefore, our algorithm mainly consists of two steps: SIR 

iteration and HTETV minimization of the reconstructed image. 

However, the two steps play different roles in image 

reconstruction. SIR process can preserve more details in texture 

regions, but speckle noise will appear in the reconstructions. 

HTETV process can effectively suppress the blocky effect and 

also reduce the divergence of SIR, but the anatomical features 

can be easily obscured. Hence, when the two steps are repeated 

alternatively, the image quality will improve gradually. 

D. Selection of   

In the proposed HTETV model, the shape parameter   

determines the regularization function in Eq. (6), and plays a 

crucial role in improving reconstruction performance. If we 

select a teeny value of  , the function ( )R x is highly unsmooth, 

and contains lots of local minimums, and hence its 

minimization is not easy. However, for larger values of  , the 

function ( )R x becomes smoother and contains less local 

minimums, and its minimization is easier. At the initial 

iterations, the results of SIR own serious artifacts and noise, we 

use the more strong regularization effect via a larger value of  

to suppress artifacts and noise fully. Subsequently, we weaken 

the regularization effect gradually via orderly slightly 

decreasing values of , which is used to preserve more edge 

details in texture regions. Due to the fact that  decreases 

gradually, for each value of  , the minimization algorithm 

starts with an initial solution will get close to the actual 

minimum of ( )R x . In this paper, we initially select
0

0.9  , 

which offers a regularization model close to TV constraint. In 

order to guarantee the proximity of adjacent iterations, the 

decreasing factor  is selected within the range from 0.9 to 1.0. 

Meantime, the selection of should satisfy
min

0.01  .  

III. RESULTS AND DISCUSSIONS

A. Numerical phantom study

We first start our evaluation with the modified FORBILD

head phantom dataset. The phantom is composed by 512 512 

pixels with image array is 20cm 20cm. The projection data 

were generated according to the fan-beam CT geometry. The 

forward projection parameters were defined as: the 

source-to-axis distance was 54.1cm and the distance of 

axis-to-detector was 40.8cm. The projection data of each view 

included 642 bins and the size of each element was 0.672mm   

0.672mm. To demonstrate the performance of our method, 

three different datasets were produced with the views of 180, 

240, and 360 during 2π rotation. After that, Poisson noise was 

added to each detector with the photon number 8 10
5
. Fig. 2 

shows the reconstructed results by different algorithms from 

the datasets acquired with the views of 180, 240, and 360, 

respectively. It can be observed that the images reconstructed 

via SIR-TV, RWTV, and SIR-HTETV algorithms are visually 

better than those by FBP in all cases. Furthermore, to make the 

otherness of the reconstructed results highlighted, the zoomed 

details of the ROI, as indicated by the red dotted rectangle in 

Fig. 2, within the results are shown in Fig. 3 to illustrate the 

improvement of the proposed SIR-HTETV algorithm. It can be 

seen that the present algorithm has better visual effect than 

other algorithms in the low contrast regions. 

Fig. 2.  The results of modified FORBILD head phantom study. 

Fig. 3.  Zoomed details of the ROI in Fig. 2. 

The following three metrics were used in this paper for 

quantitative analyses. To evaluate the noise suppression on the 

reconstructed images from low-dose measurement data, root 

normalized mean square error (RNMSE) and peak signal to 

noise ratio (PSNR) were selected in this study. 
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To assess the performance of various algorithms at the local 

detail level, the structural similarity (SSIM) was used in this 

study. 
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In order to evaluate the reconstruction results objectively, the 

PSNR, RNMSE, and SSIM were adopted to evaluate the 

reconstructed images. To calculate SSIM between the 

reconstructed results and the truth image, we selected the ROI, 

as indicated by the green dotted rectangle in Fig. 2. The 

corresponding quantitative results are shown in Table I. We can 

see that the proposed SIR-HTETV has the lowest RNMSE and 

the highest PSNR/SSIM for all cases. 
TABLE I 

COMPARING CRITERIONS OF THE RESULTS 

 RECONSTRUCTED BY DIFFERENT ALGORITHMS 

B. Mouse data study

In this study, we evaluate the performance using actual

datasets from the scanned mouse experiments in our lab. The 

X-ray tube voltage was set to be 50 kVp, the X-ray tube current

was set to 1mA, and the exposure time was set to 0.4669s. The

distance between the source and the center of rotation was

22.188cm, while the source-to-detector was 65.85cm. The

number of bins per view was 1536 880, and the size of each

bin was 0.15mm 0.15mm. To demonstrate the performance of

our method, two different datasets were obtained with the

projections of 180 and 360 during 2π rotation. From the

cone-beam projection data, the central slice was extracted. The

reconstructed image size was 512 512 with an isotropic

pixel-size of 0.1mm 0.1mm. The reconstruction results are

shown in Fig. 4. As can be seen, severe noise can be observed in

the FBP results and the images appear to be blurry near to

margin details. When compared with FBP, all three iteration

methods work better in both suppressing noise and preserving

tissue structures. Furthermore, the zoomed details of the ROIs,

as indicated by the red circles in Fig. 4, and the zoomed images

of this region are shown in the corresponding upper right corner.

We can see that the proposed SIR-HTETV produces the best

image quality with effective noise suppression and tissue

structures preservation, especially the regions indicated by the

red arrows. 

Fig. 4. The results of scanned mouse datasets. 

IV. CONCLUSION

In conclusion, we have proposed a novel SIR algorithm by 

combining the HTETV regularization, which can be used for 

low-dose CT with combined noisy and sparse-view data 

acquisitions. Our approach has produced promising results in 

terms of preserving structural details and suppressing image 

noise. Furthermore, the proposed method can be extended to 

other topics in medical imaging, including interior 

reconstruction, metal artifact reduction, etc. 
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