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Abstract—In limited angle tomography, only a limited angular
range of data is acquired and consequently a double wedge-
shaped region in the frequency domain representation of the
imaged object is missing. Hence, streak artifacts occur. To restore
the missing data, we perform a regression and an image fusion
in sinogram domain and frequency domain, respectively. We
first convert the sinogram restoration problem into a regression
problem based on the Helgason-Ludwig consistency conditions.
Due to the severe ill-posedness of the problem, regression only
partially recovers the correct frequency components, especially
lower frequency components, and will introduce erroneous ones,
particularly higher frequencies. Bilateral filtering is utilized to
retain the most prominent high frequency components and
suppress erroneous ones. A fusion of the filtered image and
the image reconstructed from the limited angle sinogram is
performed afterwards in the frequency domain. The proposed
method is evaluated on the Shepp-Logan phantom, for which
the root-mean-square error of the reconstructed image decreases
from 310 HU to 136 HU.

I. INTRODUCTION

In computed tomography (CT), image reconstruction from
data acquired in an insufficient angular range is called limited
angle tomography. It arises when the gantry rotation of a CT
system is restricted by other system parts or external obstacles.
Because of missing data, artifacts, typically in the form of
streak artifacts, will occur in the reconstructed images.

The ill-posedness of the limited angle tomography problem
has been well investigated [1], [2]. Iterative reconstruction
algorithms can incorporate prior information. In particular,
iterative reconstruction algorithms with total variation (TV)
regularization, which exploits sparsity in the image gradient
domain, have become popular in limited angle tomography
[3]–[6]. However, the high computational cost of iterative
algorithms restrains their clinical applications. Deep learning
techniques can learn compensation weights [7] to correct the
mass loss in a filtered back-projection (FBP) reconstruction
while keeping the same computational complexity [8].

An alternative approach is to restore the missing projection
data based on data consistency conditions. Many consistency
conditions have been explored, e.g., epipolar consistency in
cone-beam CT [9], John’s equation [10], and the polyno-
mial behavior of truncated data [11]. The Helgason-Ludwig

consistency conditions (HLCC) [12], [13] are the most well-
known and they are necessary and sufficient for a transform to
be a Radon transform [14]. Louis reformulated the sinogram
extrapolation problem into a system of linear equations based
on HLCC such that an approximate sinogram can be estimated
[15]. Willsky et al. and Kudo et al. also proposed to use HLCC
for limited angle reconstruction [16], [17].

In this paper, we propose a regression and fusion method to
restore the missing data for limited angle tomography. Numeri-
cal experiments on the Shepp-Logan phantom demonstrate that
the proposed method can reduce streak artifacts well.

II. METHOD AND MATERIALS

A. Background theory

The parallel-beam sinogram of a 2-D object f(x, y) is
denoted by p(s, θ), where θ is the rotation angle and s is the
detector index with the assumption −1 ≤ s ≤ 1. We define
the nth order moment curve of p(s, θ) as,

an(θ) =

∫ 1

−1
p(s, θ)Tn(s)ds, (1)

where Tn(s) = sn. The Fourier transform of the moment curve
is,

bn,m =
1

2π

∫ 2π

0

an(θ)e−imθdθ. (2)

HLCC [12], [13] can be expressed as,

bn,m = 0, |m| > n or n+m is odd. (3)

p(s, θ) can be conveniently restored from an(θ) when Tn(s)
is replaced by orthogonal polynomials. In this paper, we use
the Chebyshev polynomial of the second kind,

Un(s) =
sin((n+ 1) arccos(s))√

1− s2
. (4)

Un(s) is a family of orthogonal polynomials at domain [-1,
1] with the weight W (s) = (1−s2)1/2. Thus, an approximate
sinogram can be restored by the inverse Chebyshev transform,

pnr (s, θ) =
2

π

nr∑
n=0

an(θ)(W (s) · Un(s)), (5)
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where nr stands for the number of orders used.
The Fourier transform of W (s) · Un(s) is computed as,

F(W (s) · Un(s))(w) = π(J ′n+2(iw)− J ′n(iw)), (6)

where F is the Fourier transform operator and J ′n(z) is the
modified Bessel function of order n [18]. Because J ′n(z)
rapidly tends to zero when |z| becomes less than n, W (s) ·
Un(s) can be regarded as a high-pass filter with an cut-
off frequency denoted by wc,n. Therefore, only a circular
area with radius wc,nr

is restored completely in the Fourier
representation of the imaged object if we use pnr

(s, θ) for
reconstruction, since the missing polynomials of orders higher
than nr only contribute to the frequency range above wc,nr .

B. Regression method for sinogram restoration

We denote the projection angles as θ = [θ0, θ1, ..., θN−1]>

where 0 ≤ θk < θmax, k = 0, 1, ..., N − 1, θmax is
the maximum scanned angle, and N is the total number
of acquired projections. We further denote the missing an-
gular range as Φ = π − θmax. Then, N samples on
the moment curve of order n are available, denoted by
an(θ) = [an(θ0), an(θ1), an(θ2), ..., an(θN−1)]>. We seek to
restore the complete 180◦ sinogram at the angles θcomp =
[0, 1, ...,K − 1] · ∆θ from the acquired samples where K =
bπ/∆θc and ∆θ is the angular step.

Due to HLCC, Eq. (2) can also be represented as the
following trigonometric Fourier series,

an(θ) = cn,0 +
n∑

m=1

(cn,m cos(mθ) + dn,m sin(mθ)), (7)

where cn,0 = bn,0 and (cn,m−dn,mi)/2 = bn,m. Accordingly,
cn,m = 0 and dn,m = 0 when n+m is odd. That is, when n
is even, m can be 0, 2, 4, ..., n− 2, n. Thus, an(θ) has n+ 1
unknown coefficients denoted by,

βn,e = [cn,0, cn,2, dn,2, cn,4, dn,4, . . . , cn,n, dn,n]>. (8)

As a result, we get the linear regression problem,

[1, cos(2θ), sin(2θ), cos(4θ), sin(4θ), . . . ,
cos(nθ), sin(nθ)]βn,e = an(θ),

(9)

where cos(·) and sin(·) are element-wise operators.
When n is odd, we get a similar regression problem with

again n+ 1 unknown parameters,

[cos(θ), sin(θ), cos(3θ), sin(3θ), . . . ,
cos(nθ), sin(nθ)]βn,o = an(θ),

(10)

where

βn,o = [cn,1, dn,1, cn,3, dn,3, . . . , cn,n, dn,n]>. (11)

For each case, the regression problem can be written as,

Xn(θ)βn = an(θ). (12)

With an estimate β̂n of parameters βn, the complete nth
moment curve ân(θcomp) is obtained as

ân(θcomp) = Xn(θcomp)β̂n. (13)
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Fig. 1. Condition numbers of Xn(θ) as a function of the order and the
missing angular range. The condition numbers are logarithmized as log10(κn)
and the lines are contours with step size 2.

Then the complete sinogram can be restored using Eq. (5) and
the object can be reconstructed.

The conversion of the sinogram restoration problem into the
regression problem in Eq. (12) has the following benefits:

(i) θ can be a partial angular range and it does not have to
be uniformly distributed.

(ii) We can investigate its ill-posedness conveniently by
computing the condition number of matrix Xn(θ). An exam-
ple is displayed in Fig. 1. It indicates that when the order n or
the missing angular range Φ increases, the condition number
increases drastically. When n ≥ N = (180◦ − Φ)/∆θ (the
upper right triangle), Xn(θ) with size N × (n+ 1) becomes
underdetermined. Therefore, the regression problem (Eq. (12))
for sinogram restoration is ill-posed.

(iii) Various existing algorithms are available to solve ill-
posed regression problems. Here we use Lasso regression [19],

βn = arg min
1

2
||Xn(θ)βn − an(θ)||+ τn||βn||1, (14)

where τn is a regularization coefficient. It can be solved by
the iterative soft-thresholding algorithm [20].

C. Image fusion in frequency domain

The proposed regression method is applied to restore the
complete sinogram pnr (s, θ). The image reconstructed from
pnr

(s, θ) is denoted by fHLCC(x, y). Since the condition num-
ber of Xn(θ) increases drastically when n increases, only
certain orders of the moment curves are estimated correctly.
Let nc denote the highest order that is still estimated correctly.
Then, the frequency components of fHLCC(x, y) are only
correct inside a circular area with radius wc,nc

. Consequently,
regression errors in the restored moment curves from order
nc + 1 to nr will introduce artifacts.

To obtain only the most prominent and reliable high fre-
quency components associated with sharp edges and suppress
erroneous smaller ones, a strong bilateral filter (BF) [21] is
applied to fHLCC. The filtered image is denoted by fBF.

We denote the image reconstructed from the limited angle
sinogram by flimited(x, y) and its 2-D Fourier transform in
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polar coordinates by Flimited(w, θ). The central slice theorem
reveals that a double wedge region is missing, i.e.,

Flimited(w, θ)|θmax≤θ<π,−∞<w<∞ = 0. (15)

We only want to use the information contained in fBF to
fill in these unobserved regions. For this purpose, we design
a double wedge-shaped mask M(w, θ) in frequency domain
where values outside the double wedge zero region are 1. The
binary mask M(w, θ) is smoothed by a Gaussian filter to get
a smooth transition at its boundary. Then the following image
fusion (Fig. 2) is performed,

Ffused = Flimited ·M + FBF · (1−M), (16)

where FBF is the 2-D Fourier transform of fBF and the
operators are to be understood element-wise. The fused image
ffused can be obtained from Ffused afterwards.

=

Flimited

+

FBF Ffused

Fig. 2. Illustration of the fusion in frequency domain. The black and blue
areas are the missing and measured frequency components respectively. The
green frequency components are estimated by HLCC and the bilateral filter
where the faded green area might be estimated incorrectly.

D. Experimental setup

To evaluate the performance of our proposed method, a
simulation experiment is conducted with the standard high-
contrast pixelized Shepp-Logan phantom (Fig. 4(a)). Its image
size is 512× 512 with an isotropic pixel size of 0.4 mm. The
linear attenuation coefficients are between [-1000, 3000] HU.

The limited angle sinogram is simulated with a parallel-
beam trajectory using a ray-driven method with a sampling rate
of 7.5/mm. No noise is simulated. The total scanned angular
range is 160◦ and the angular step is 0.5◦. The number of
the equal-space detector pixels ND is 1537 and the detector
element size is 0.2 mm.

Empirically, we choose nr = 720 to restore the sinogram.
For each order n, the soft-threshold τn = 0.001 · (1−n/1000)

is used and the iteration stops when ||β̂
l+1

n − β̂
l

n||2/||β̂
l

n||2 <
10−4 where β̂

l

n are the estimated parameters at l-th iteration.
The images are reconstructed using FBP with the Ram-Lak

kernel. The bilateral filter is characterized by the geometric
spread σc = 30 and the photometric spread σs = 0.05
defined on an N = 40 × 40 neighborhood [21]. The binary
mask M(w, θ) is smoothed by a Gaussian filter with a cutoff
frequency at 0.4 Nyquist frequency. The experimental setup is
implemented in CONRAD [22].
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Fig. 3. Plot of curve â100(θcomp) as an example to illustrate the regression.
The area in the two red lines is the missing part and the angular range
[180◦, 360◦) is displayed based on p(s, θ) = p(−s, θ + π).

III. RESULTS AND DISCUSSION

The curve of â100(θcomp) is plotted in Fig. 3(a) as an
example to illustrate the regression problem. It shows that the
estimated moment curve has some deviations to the ground
truth moment curve a100(θcomp), indicating the existence of
regression errors.

The reconstructed images and their absolute differences
from the ground truth are shown in Fig. 4. Comparing fHLCC
with flimited, large streak artifacts are reduced and the shape of
the outer boundary is reconstructed better in fHLCC. However,
it suffers from artifacts caused by regression errors, which
appear as small streaks. Fig. 4(g) reveals that the edge areas
in fHLCC also have large errors. This results from the missing
high frequency components due to the low number of nr.
Figs. 4(d) demonstrates that the bilateral filter can remove
artifacts and partially recover the high contrast edges. With
the image fusion, streak artifacts are reduced in ffused while
avoiding the introduction of new artifacts due to regression.

IV. CONCLUSION

In this paper, we propose a regression and fusion method
for limited angle tomography to restore missing data. The
limited angle sinogram restoration problem is converted into
a regression problem based on HLCC. A strong bilateral filter
is used to preserve prominent sharp edges and reduce artifacts
caused by the regression. Afterwards, a fusion in the frequency
domain utilizes the restored frequency components to fill the
missing double wedge region. With our proposed method,
streak artifacts can be reduced in the final fused image.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available.
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