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Abstract— The analytic filtered backprojection algorithms 

are widely used in the computed tomography field. It is well 

known that the filtering step is implemented either by a ramp 

kernel function or by combining the derivative and Hilbert 

filtering operations. Although the derivative is a local operator, 

the corresponding discrete kernel function has infinite support. 

It is practical to compute derivative using some numerical 

methods, such as forward, backward, central differences and 

spline fitting. In this paper, we numerically evaluate the 

performance of different numerical methods for computing 

derivative by fixing other factors. By quantitatively analyzing 

the reconstructed image quality, we look into tradeoffs between 

image quality indexes when each type of derivative is used. 

Results show that, the central difference approximation 

derivatives produce the most accurate images with lower noise 

and spatial resolution, whereas the spline fitting leads to the 

highest spatial resolution with higher noise. 

 
Keywords—Filtered Backprojection; Derivation Operator; 

Numerical Simulation; Central Difference; Spline Fitting 

I. INTRODUCTION  

In the computed tomography (CT) field, the analytic 

Filtered Backprojection (FBP) algorithms are widely 

adopted for reconstructing images. They are preferred due to 

their fast and efficient implementations over the competitive 

iterative algorithms like simultaneous algebraic 

reconstruction technique (SART), which assume an image 

as an array of unknowns and solve it by setting up equations 

in terms of projections. The accuracy and speed of iterative 

algorithms come at a computational cost. Projections are 

essentially modelled as a collection of line integrals through 

an object (the image) at certain angles [1]. For a simulated 

object like the popular Shepp-Logan head phantom [2], its 

projections can be analytically computed by taking the 

integrals along lines oriented at a certain angle. For real 

objects, like the human brain, we can’t measure line 

integrals directly. However, we can indirectly measure them 

by taking advantage of the fact that x-rays are attenuated 

when they pass through matter. The photoelectric and 

Compton effects cause x-rays to decrease in energy, and in 

number of photons. Comparing energy and photon count in 

the incident and emergent ray allows us to determine the 

line integrals by performing logarithmic operation based on 

the so-called Beer’s law. The integrals are of the x-ray 

attenuation coefficient along points through the line. It 

should be noted that this only works for monochromatic x-

rays. Polychromatic x-rays, the most common form of x-

rays in clinical practice, consist of a large spectrum of 

energies and they require more involved calculations to 

approximate [1]. The logarithmic value of the ratio between 

the intensities of the original and received x-rays is 

considered as the projection. The reduction (or the 

attenuation) of the intensity of an x-ray as it passes through 

the object is what makes computed tomography possible for 

real objects. Although this model is a gross simplification, it 

will do for the purpose of this paper. 

      With projections in hand, CT reconstruction is 

essentially an inverse problem to obtain the original 

distribution of the attenuation coefficients (e.g. image). An 

FBP algorithm takes these projections as input and 

reconstructs images as output. For every projection view, its 

measurements are first weighted with appropriate function 

to account for redundancy, filtered, and finally copied 

through the entire image plane (backprojection). 

Redundancy happens because some line integrals are 

measured more than once. The filtering step in an FBP 

algorithm can be implemented in two main ways. One is to 

use the ramp filtering, and the other is to use the derivative 

followed by the Hilbert filtering [1, 3]. In this paper, we will 

focus on the later. In fact, more ways can be obtained by 

changing the order of the aforementioned steps. Each FBP 

algorithm can have more variations with different tradeoffs. 

Depending on the x-ray beam shape, we have parallel beam 

or fan-beam geometry. Fan-beam employs a single x-ray 

source that spreads the x-rays in the shape of a fan, while 

parallel beam uses a single source that has to linearly scan 

over a length of a projection sending parallel rays one at a 

time. For the fan-beam geometry, depending on how the 

arrays of detectors are arranged, we have equiangular or 

equidistant detectors. Equidistant detector geometry means 

the sensors are positioned in equal distances from each 

other, while the equiangular detector geometry means the 

sensors are positioned at equal angles from each other. In 

practice, fan-beam is preferred for 2D CT reconstruction as 

it takes less time to obtain the projections [1,3]. Without loss 
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of generality, we will evaluate an FBP algorithm assuming 

fan-beam geometry and the equiangular detectors. 

      As the aforementioned, the filtering step is an important 

part of an FBP algorithm. It has been well established that a 

ramp filter kernel function can be used [2] and several 

numerical methods have been developed, such as R-L filter 

[13], S-L filter [14], etc. From the point view of Fourier 

analysis for signal processing, the ramp filter can be 

decomposed into the derivative operation and the Hilbert 

filter [3]. While there are lots of studies that have gone into 

the Hilbert filter and its discrete counterparts [4-5], as far as 

the authors know, there are no papers dedicated to the 

derivative operation in an FBP algorithm. This motivates us 

to perform a comprehensive evaluation on the derivative 

operation for the FBP algorithms. Because the discrete 

version of an ideal derivation operator has infinite support, 

our evaluation focuses on the derivative approximation. This 

includes the forward, backward, and central differences, 

spline interpolation, etc. We numerically evaluate these 

methods and assess their impacts on image quality of the 

reconstructed images. Our goal is to optimize those 

numerical methods and provide a practical guidance for 

derivation operation in an FBP algorithm. This can help to 

numerically optimize the engineering implementations for 

all FBP-type algorithms for better performance, particularly 

for quantitative analysis based applications (e.g. lung 

functional perfusion study).  Because the derivative 

operation is also an important component in all 

backprojection filtration (BPF)-type algorithms, the results 

obtained should be directly applicable to all BPF-type 

algorithms, too.  

      The rest of the paper is organized as follow. In section 2, 

we describe the fan-beam equiangular imaging geometry, 

projection model and the corresponding FBP reconstruction 

formula. In section 3, we perform theoretical analysis on the 

discrete derivative operation and the approximation 

methods.  In section 4, we report our experiment design and 

numerical results from simulated projected data of the 2D 

Shepp-Logan head phantom, as well as clinical data 

obtained from clinical CT scanners. In last section, we 

discuss some related issues and conclude this paper. 

 

II. IMAGING GEOMETRY AND FILTERED 

BACKPROJECTION 

 

To describe the FBP formula, we first need to describe the 

imaging geometry in which the projections are measured. 

The imaging geometry in this paper is depicted in Fig. 1 [4]. 

The figure shows an object centered at the origin of the 

Cartesian coordinate plane. An x-ray source assuming a 

point emits x-rays that illuminate the object in a fan like 

fashion. The distance from the ray source to the center of the 

object is called the focal length, denoted by D. The photons 

along the x-ray paths (projection rays) are received by the 

arced detector cells [4]. In practice, a detector cell integrates 

the energies of all the received photons. By comparing the 

energy integral to the incident ray, it gives us a measure of 

attenuation which is modeled by line integrals in theory [3]. 

At each point the detector cell receives all the photons along 

the corresponding x-ray path, the value of the line integral 

of the x-ray path is recorded. A collection of these values 

over the entire length of the detector make a projection 

taken at a view angle β. The projections are represented by 

       which is a function of both β and  , and   is used 

for x-ray path. To locate each x-ray path, the angle   is 

calculated between the projection x-ray path and the central 

x-ray path which runs from the focal spot to the origin. For 

the equiangular case, the angle    between two consecutive 

x-ray paths is known. If we know, for example, that our x-

ray path is the third from the detector center, it’s angle is 

simply     . 

 
Fig. 1. Fan beam imaging geometry 

      As the aforementioned, FBP requires multiple 

projections taken at different β distributed around the object. 

After projection         is taken, the x-ray source is rotated 

   about the center of rotation in Fig. 1 to β2  where 

projection         is measured.  The projections may be 

distributed       around the object, or less than it. A      
scan of the object is called a full scan. Without loss of 

generality, the FBP algorithm chosen assumes a full scan in 

this work. Before presenting the full-scan fan-beam 

equiangular FBP formula, a word on the Fourier central 

slice theorem is pertinent. The Fourier slice theorem relates 

a projection to a parallel slice through the two dimensional 

(2D) Fourier transform of an image. It’s the basis for the 

derivation of parallel beam FBP algorithms [3-4]. 

Unfortunately, due to the geometry of fan-beam and how the 

projections are taken, we cannot apply it directly to obtain 

fan-beam algorithms. We can, however, relate parallel beam 

algorithms to fan-beam algorithms by taking advantage of 

the fact the fan-beam projections can be rebinned into 

parallel beam geometry. We can either rebin all fan-beam x-

rays to parallel beam and use parallel beam algorithms 

directly, or mathematically derive them from parallel ones. 

The former method is not used, because it introduces 

interpolation errors from the conversion. However, there are 

some studies using Laplacian kernel, also a local operator, 

plus inverse ramp kernel for truncation artifact correction. 
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The latter is in common use, and is the one used to derive 

this paper’s formula [3-4]. 

      The full scan equiangular FBP formula studied in this 

paper is expressed as 

      
 

  
∫

 

  ̃     
(∫

       

  

 

      ̃   
  

 

 

 
 

 

)   
  

 
             

 where      is the reconstructed image at the position   
      in Cartesian coordinates [3-4],        represents the 

projections,   ̃  is parameter for the ray path that passes 

through the point    for the view angle  , and  ̃      is the 

distance between the focal spot of the view angle   and 

point   to be reconstructed.   The partial derivative of 

the projections is first calculated with respect to  .  Then, it 

is filtered with the Hilbert filter 
 

       ̃   
. On closer look, 

the Hilbert filtering is done by convolution with the partial 

derived projections. Noticing that the inner integral (i.e. 

convolution) assumes the equiangular detector span   

radians, the integral goes from 
  

 
 to 

 

 
. The Hilbert filter 

employs a sine operation which is a byproduct of the 

derivation of this fan-beam FBP from its parallel beam 

counterpart. The aforementioned fan-beam FBP algorithms 

are special cases of the parallel beam ones. The conversion 

involves changing variables, and the inclusion of Jacobian 

factor to the parallel beam formulas [3]. Every projection 

has to be weighted to the reconstructed image. This is 

necessary because of the fan-beam rebinning to parallel-

beam. The weighting, 
 

  ̃     
, is a function of the projection 

view angle, and the point   in the image plane.  ̃  is the 

distance from the reconstruction point   to the x-ray source 

focal spot at angle β. After weighting,      represents our 

reconstructed image in Cartesian coordinates. 

 

  

III. THEORETICAL ANALYSIS AND APPROXIMATION 

METHODS 

Given a continuous function      where      , its 

derivative is 
     

  
.  

     

  
  at a value      is defined as 

    
      

  
        

             

 
                                     

The limit represents the slope of the tangent line at point    

in the function     . In practice, only discrete samples are 

available, and it is impossible to deal them as a continuous 

function.  Let       represent the discrete function, where 

      ,        and T is the sampling period, sampled 

from the continuous function     .       can be viewed as 

     multiplying by a periodic impulse train,      [15]. 

This is illustrated as 

                                                          

where      is defined as 

      ∑                                   
       

Here      is the unit impulse function. Equation (3) can be 

rewritten to account for the fact that multiplication of a 

function by a unit impulse samples the value of the function 

at the impulse’s location [15]. 

       ∑                                       
       

If      is bandlimited to a frequency     and the sampling 

frequency     
  

 
 is such that       (Nyquist 

Theorem), then       uniquely identifies      and they can 

be used for signal recovery [15]. There are several ways to 

do this among which band limited interpolation is 

theoretically exact. Band limited interpolation involves 

convolution with a sinc function         . 

                                                 

where the “*” symbol refers to convolution and it not the 

usual multiplication. In digital signal processing, the sinc 

function is normalized such that ∫          
 

     
  , and 

is formally defined as  

         
       

  
                                       

Combining equations (5) and (6), it now gives us the 

interpolation formula of      such that 

      ∑                                  
      

Once we have described a basis for the discrete function, we 

can now proceed with analysis of the discrete operation. 

Applying continuous derivative to equation (8), it yields 
     

  
 ∑

                

  
                            

       

Although the derivative is a local operation, equation (9) 

shows that the derivative at a position involves all the 

sample values. That is, the operation is nonlocal. This 

phenomenon can also be interpreted from equation (2). In 

practice, the exact solution to the limit is hard to calculate 

exactly by using equation (2) because it becomes a divide-

by-zero problem when    . As a result, the derivative 

cannot be computed exactly, and has to be approximated 

this way. It must be pointed out that if the analytical form of 

the signal is known e.g. a quadratic         , and the 

function is continuous and smooth, then the derivative can 

be computed exactly. However, there is no analytical form 

for most of the practical applications, such as CT 

reconstruction.  

     There are various approximation methods available. In 

this paper, we will evaluate four popular methods including 

finite differences and spline fitting. The finite difference 

methods are defined based on equation (2).  For a point    

[6-8], we have three variants of finite differences (forward, 

backward and central) 
      

  
 

             

 
                                    

      

  
 

             

 
                                    

      

  
 

                   

  
                                            

The forward difference derivative approximation (FDDA), 

defined by equation (10), subtracts the value of the function 

at point    from the function’s value at a point a period 

ahead. This difference is then divided by the sampling 

period   to obtain the derivative. The backward difference 

derivative approximation (BDDA), defined by equation 

(11), is same as FDDA with one exception being in the 

numerator where the difference is obtained by subtracting 

the function’s value at a period behind from its value at 
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point   . A thing to note is that derivatives from FDDA and 

BDDA are not at the exact points of interest but are shifted 

slightly to the right or left, respectively. Appropriate 

compensation has to be added in an application. To 

compensate for the shift seen in FDDA, 0.5 is subtracted 

from detector cell coordinate used to index into the 

projection. Similarly, 0.5 is added in the case of BDDA. 

This should be intuitive as FDDA or BDDA take points to 

the right or left, and at point of interest and averages them. 

The last of finite difference based methods is the central 

difference derivative approximation (CDDA) shown in (12). 

It takes the function’s value at points a period ahead and 

below from the point of interest and divides it by double 

sampling period. It doubles the sampling period as its 

numerator spans twice the distance than FDDA and BDDA. 

It can be thought off as taking the average of the FDDA and 

BDDA at a point   . For this reason, CDDA gives a more 

accurate approximation of the derivative as it considers 

points around the point of interest [6-8]. 

       The spline derivative approximation, as its name 

implies, uses a spline which is a piecewise smooth 

polynomial function. There are different types of splines, 

and the one employed in this paper is the third order natural 

cubic spline. This spline consists of piecewise cubic 

polynomials connecting a set of points. To make it smooth, 

the second derivative of each piecewise polynomial is set to 

be equal to every other at the endpoints. Given a one-

dimensional set of I points             , the  th
 piecewise 

polynomial connecting two points is given by [14] 

                
     

                          

where         and            . The remaining 

variables are defined in the following equations 

                                                               

                                            

Taking derivatives of       to generate enough equations to 

solve yields 

                                                                 

                                                   
Equations (14) through (17) are enough to solve for the 

variables   ,   ,   , and   . As the aforementioned, the 

spline has to be smooth. Therefore, the following additional 

constraints are applied           ,   
          

    , 

         , and               
     for interior points in 

each interval.  

      Once the spline is calculated, the derivative at a point   

is then the derivative of whatever piecewise polynomial at 

that point. The cubic spline derivative approximation 

(CSDA) method is focused on smoothness of the fitted 

spline rather than the accuracy of the derivative. As a result, 

a penalty to the derivative is anticipated. 

 

IV. EXPERIMENTAL DESIGN AND RESULTS 

A. Experimental Design 

The FBP algorithm Equation (1) was implemented and ran 

using the MATLAB programming language on an Intel® 

Core™ i5-2540M CPU, 2.60 GHz and 6 GB RAM PC 

platform. The implementation was divided into three main 

parts: derivative of the projections, performing Hilbert 

filtering, and backprojection. The FDDA, BDDA, CDDA 

were straightforward to compute as they used simple 

arithmetic, whereas the SCDA required a spline fit. The 

MATLAB function “spline” was used to interpolate the 

splines between the points. The derivatives of the splines 

were calculated using “fnder” function, and evaluated at our 

points of interest using the “ppval” function [6-8].  To 

perform Hilbert filtering, the Hilbert kernel was first 

generated with respected to   as shown in equation (1). The 

sine operation is then applied to   to complete the filter. An 

important factor in the generation of the filtering kernel is its 

size with respect to the projections. Given projections are   

elements big at a certain angle β, the discrete Hilbert filter 

kernel function must be     . Performing discrete 

convolution of the discrete Hilbert filter with the projections 

yields a result thrice the size. In discrete convolution 

between two signals, the size of the resulting signal is the 

sum of the sizes of signals subtracted one [5]. The 

convolution was performed by calling the optimized 

convolution function in Matlab for fast computing. 

        The final step of the implementation is the 

backprojection. The final 2D image will be an M by N 

array. The reconstructed image will be centered at the origin 

of the coordinate plane similar to the object in Fig. 1. For 

every derived and filtered        at angle β, we loop 

through the entire image array (initialized to zeros), and for 

every grid point its coordinate       in the projection view 

plane is computed. From them, the angle   the point 

subtends is obtained. This angle is then converted to the 

detector cell coordinate. For FDDA and BDDA, pixel shift 

occurs in the reconstructed image as the derivative is offset 

by 0.5 and -0.5. To address this, 0.5 was subtracted or added 

from the detector cell coordinate, respectively. No 

adjustments were needed for the remaining two other 

methods. We then index into the derived and filtered 

       with help of some linear interpolation, since the 

detector cell coordinate might not be exactly on a sampling 

point of   . This value is added to the point       with the 

weighting  
 

  ̃
. Once we’ve looped through every projection 

view β and do the same, the value of a point       is then 

the sum of every        related to it. The entire 

reconstructed image is lastly divided by    to account for 

scale. 

      Experiments conducted were categorized into numerical 

simulations and preclinical applications. For numerical 

simulations, we ran the FBP on projections obtained from a 

2D high-contrast Shepp-Logan phantom [2].  The Shepp-

Logan phantom, a famous model of the human head, is used 

to obtain projections for testing the accuracy of image 

reconstruction algorithms. It is composed of 8 ellipses of 

varying centers, major and minor axis, orientation, and gray 

level. The ellipses model different tissues in the human 

head. Table 1 lists the parameters of the Shepp-Logan 

phantom. Columns a and b represent the major and minor 

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

141



axis of the ellipses. Columns    and    represent the x and y 

coordinate of the center of the ellipse. Column   represents 

the orientations of each ellipse, and lastly column µ 

represents the gray levels. For preclinical applications, the 

FBP was run on two realistic projection data sets obtained 

from commercial CT scanners. We first present numerical 

simulation results, followed by the preclinical application 

results. 

Table 1.  Shepp Logan phantom parameters 

No. a b           

1 0.6900 0.900 0 0 0 1.0 

2 0.6792 0.882 0 0 0 -0.8 

3 0.4100 0.160 -0.22 0 108 -0.2 

4 0.3100 0.110 0.22 0 72 -0.2 

5 0.2100 0.250 0 0.35 0 0.2 

6 0.0460 0.046 0 0.1 0 0.2 

7 0.0460 0.023 -0.08 -0.65 0 0.1 

8 0.0460 0.023 0.06 -0.65 90 0.1 

B. Evaluation Criteria 

Prior to running the experiments, criteria for evaluating the 

performance of algorithms had to be established. To 

evaluate the quality of the reconstructed images, the Root 

Mean Square Error(RMSE), Structural SIMilarity (SSIM), 

and Full Width at Half Maximum(FWHM) were calculated. 

 RMSE is a traditional measure of image quality based on 

error sensitivity [11]. It’s a measure of how much on 

average values in a reconstructed image differ from a 

reference image of perfect quality. The smaller the RMSE 

is, the better the image quality is. However, the RMSE 

doesn’t account for the perceived quality of the images. 

Studies have shown that the human visual system (HVS) is 

highly adapted to extract structural information from the 

viewing field.  

 The SSIM measures the similarity between two images 

[11]. A measure of structural information change can 

provide a good approximation to perceived image distortion. 

An SSIM index is a measure of how structurally similar two 

images are. SSIM requires access to a full reference image 

to work. 8 by 8 area in the test image is chosen and 

compared to the corresponding area in the reference image. 

A local SSIM index value is given based on how similar 

these two patches are. This process is repeated to obtain 

local SSIM index values over the entire image. Then, the 

mean SSIM is calculated [11]. The reason it is broken into 

small chunks for comparison is that in theory our eyes focus 

on one small area at a time. The SSIM therefore improves 

upon RMSE by including human visual perception in 

assessing image quality. The SSIM index is a value between 

0 and 1 inclusive. A value of 1 means two images are fully 

structurally similar, while a value of 0 means there is no 

similarity at all [11].  

     FWHM is the size of the smallest feature that can be 

detected. It can also be thought of as the smallest distance 

two objects can be from each other, and still be 

differentiated. FWHM doesn’t require reference images like 

RMSE and SSIM [12]. Usually a point spread function of a 

system under study is used to obtain FWHM. Because it is 

quite difficult to obtain point spread function, we resorted to 

a method similar to the one used by Schlueter et al [12]. To 

compute FWHM, a point in a homogeneous region (e.g. a 

small ellipse in the Shepp-Logan phantom) in the 

reconstructed image was chosen. A line radiating from this 

point to the edge was sampled to generate a single step 

function (SSF). Its derivative was calculated via forward 

approximation to yield the Line spread function (LSF). A 

Gaussian model was fitted to the LSF. Then, FWHM is 

calculated from the Gaussian fit. FWHM is the difference 

between two values of the independent variable at which the 

value of the Gaussian function is half maximum. There can 

only be two such points for a Gaussian function. This 

process was repeated for equiangular lines from the point. 

Their FWHM was averaged to get the mean FWHM. The 

smaller the FWHM value is, the better the spatial resolution 

is. It must be mentioned that this measurement is subjective 

because a point has to be picked manually from the 

reconstructed image. The point picked matters a lot in final 

determination of FWHM value. However, it is fair for all the 

methods to be evaluated.  

C. Numerical Simulations 

720 projections were analytically obtained over 2  by using 

the parameters in Table 1 for the Shepp Logan phantom. 

The distance   from the x-ray focal spot to the origin of the 

object was 500 mm, and the radius of the phantom was 100 

mm. The projections were spaced 0.5  from each other (  ). 

The detector had 600 cells, which implies that each 

projection contains  600 ray sums through the object. FBP 

algorithm was applied to the projection data four times, once 

for each type of the aforementioned derivative computing 

method. Fig. 2 shows the reconstructed 512x512 images, 

Fig.3 shows representative profiles along the vertical and 

horizontal lines in Fig. 2, and Table 2 lists quantitative 

analysis results. 

Table 2. Quantitative analysis of Shepp Logan phantom results 

 RMSE SSIM FWHM 

Forward 0.1197 0.8721 0.0998 

Backward 0.1197 0.8721 0.0998 

Central 0.1161 0.9062 0.1090 

Spline 0.1204 0.8851 0.0981 

     As one can see it’s hard to tell the images one from the 
other particularly those from FDDA, BDDA and CSDA. 
However, the RMSE shows the difference. FBP with CDDA 
yielded the smallest RMSE among the four. FDDA and 
BDDA were tied for second, while CSDA came in last place. 
FDDA and BDDA have the same value as they are 
essentially just shifted versions of each other. It must be 
noted that these results were expected because appropriate 
pixel shift correction as stated earlier was applied. RMSE 
disregards this shift. The error between the reference and 
images are also shown in Fig. 2. CDDA has the least error of 
the four, while FDDA, BDDA and CSDA follow closely. 
Table 2 column 3 lists the SSIM results. CDDA came first 
however CSDA came in second this time, and FDDA and 
BDDA both came in last. SSIM index for CDDA is 2.38% 
higher than second place CSDA, while CSDA was 1.49%  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 2. Numerical simulation results of the Shepp-Logan phantom. (a)-(d) 
are images reconstructed by the Forward, Backward, Central and Spline 

methods for derivative, respectively. (e)-(h) are the corresponding error 

images of (a)-(d) with respect to the ground truth. The display window for 
(a)-(d) is [0.15,0.25] and the display window for (e)-(h) is [-0.05, 0.05]. 

higher than FDDA and BDDA. Again, FDDA and BDDA 
were tied. CDDA method produced the most structurally 
similar image to the original. Table 2 column 4 lists FWHM 
results from the Shepp-Logan phantom. This time CSDA 
performed the best, FDDA and BDDA were tied for second, 
and surprisingly CDDA is last. The fact that CDDA does an 
averaging of values around the point of interest to compute 
the derivative causes it to incur a penalty in spatial 
resolution. In fact, this is a tradeoff between image noise and 
spatial resolution. The sharper the image is, the higher the 

spatial resolution is and the higher the noise level (e.g. 
RMSE) is. 

 

 
Fig.3. Representative profiles along the horizontal (top) and 
vertical red lines indicated in Fig. 2 (a). 

D. Realistic Data Sets 

The FBP algorithm run on two different real preclinical data 

sets. The 1
st
 data set was acquired on a Siemens 

SOMATOM 64 CT scanner. It consisted of 1160 projections 

over 2  scanning range of a slice through the chest of a 

sheep. The projections were spaced 0.31  from each other. 

The detector had 672 detector cells spaced 0.08 . This data 

set was a combined 1160x672 array. The distance D from 

the x-ray focal spot to the origin of the object was 570mm. 

Similar to the numerical simulations, the FBP algorithm was 

applied to the data four times, and once for each type of 

derivative computing method. The reconstructed images are 

shown in Fig. 4.  The reconstructions are look generally 

good and similar. An objective measurement is needed to 

tell the difference. RMSE and SSIM cannot be relied upon 

as they require access to a perfect reference image which is 

impossible for a preclinical application. Here, we just chose 

to compute spatial resolution. Table 3 column 1 lists the 

results. The CSDA had the highest spatial resolution. It 

performed 5.598% better than second place. FDDA and 

BDDA were tied for second, and CDDA came in close last. 

Those results are consistent with the aforementioned 

numerical simulations. 

Table 3. FWHM results of real datasets 

 Real Dataset 1 Real Dataset 2  

Forward 1.7025 1.9848 

Backward 1.7025 1.9848 

Central 1.7035 2.0418 

Spline 1.6132 1.8895 

 

     The 2
nd

 data set was acquired on a Discovery CT750 HD 

scanner. It consisted of 984 projections over 2  range for a 

slice through a physical phantom. The projections were 

spaced 0.37  from each other. For this kind of GE CT 

scanner, the detector had 888 detector cells spaced 0.063  . 
The dataset was a combined 984x888 array. The distance D 

from the x-ray focal spot to the origin of the object was 

538.52 mm. Again, the FBP algorithm was applied four  
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(a) (b) 

  
(c) (d) 

Fig. 4. Results from the first real dataset. (a)-(d) are reconstructed by the 

Forward, Backward and Central differences and Spline method, 
respectively. The display window is [-1000, 500]HU. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 5. Results from the second real dataset. (a)-(d) are reconstructed by 

using Forward, Backward, Central differences and Spline method, 
respectively. The display window is [-1000, 400]HU. 
 

times to projections, once for each type of derivative 

computing method. The reconstructed images are shown in 

Fig. 5.  Similar to the first preclinical data set, the 

reconstructed images are generally good and quite similar. 

Quantitative analysis results of FWHM are listed in Table 3. 

The CSDA had the highest spatial resolution. It performed 

5% better than the second place FDDA and BDDA methods. 

CDDA came in last. Again, it confirms that the CSDA 

method can produce the best spatial resolution. 

V. DISCUSSIONS AND CONCLUSION 

For the ideal imaging model, there is no noise in the 

projections. This is not the case in reality. In fact, x-ray 

imaging equipment generates noise with the production of 

x-rays [3]. The detected x-ray photons including noise are 

converted to electrical signal for storage. The more the x-ray 

photons are generated, the less noise that is superimposed. A 

stronger x-ray flux may have less noise. However, it 

delivers more radiation dose. If the x-ray signal is relatively 

higher than noise, the effect of noise can be disregarded or 

filtered out. The key here is that the signal strength grows 

much larger than the noise such that the signal is separable 

from the noise or the noise is negligible [15]. The parameter 

referred to here is the signal to noise ratio (SNR) which is 

the ratio of the strength of signal to noise expressed in 

decibel. For x-ray tomography a minimum SNR needed to 

obtain approximately accurate reconstructed images is 

desired. A higher SNR might mean better results at a cost of 

higher radiation dose to the patient. To assess the effect of 

noise as well as measure the sensitivity of the FBP 

algorithm to it, we added white Gaussian noise to all 

simulated data with a varying SNR, and calculated RMSE, 

SSIM, and FWHM.  It has been proved that the well-

accepted Poisson noise model is equivalent to the Gaussian 

noise model in the after-log linear integrals.  Here the 

uniform Gaussian noise can be understood as the after-log 

Poisson noise with an ideal bow-tie filter to make it 

uniform. The signal to noise ratio was changed from 20 to 

140 decibels in 10 increments, and results calculated at each 

step. Without loss of generality, the CDDA method (the 

most accurate) was used to evaluate the stability for the 

derivation computing part. Table 4 lists the RMSE, SSIM 

and FWHM results of running the FBP algorithm employing 

CDDA on a simulated noisy data set from the simulation 

experiment. An SNR of 40 decibels yields results that 

approximate the noiseless case from Table 2. This means an 

SNR of or around 40 is the minimum required to obtain 

good reconstructions. If better results are still required, a 

bigger SNR has to be risked. 

      In this paper, we focused on four methods of the 

numerical derivative in an FBP algorithm.  There are many 

methods that haven’t been discussed including other 

difference and spline variants. It is hoped that this paper 

may provide motivation for further study of the derivative 

operation. Another thing that has not been discussed is the 

computational cost of methods used. The CSDA method is 

the most computational expensive as it involves more steps 

and calculations than the rest. The rest have similar if not 

the same cost. Is the modest increase in spatial resolution 

worth spline’s computational cost? This is something that 

maybe considered, but given the power of modern 

computers cost is negligible. 

           In conclusion, we implemented the equiangular FBP 

algorithm for fan beam geometry with a focus on derivative 
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approximation, and numerically tested them using the 

Shepp-Logan phantom and two preclinical datasets. Our 

results show that the derivative calculated via central 

difference approximation produces the least error and most 

structurally similar reconstructed image, whereas the CSDA 

produced the highest spatial resolution. This doesn’t mean 

that FDDA and BDDA are bad as all methods performed 

relatively well. However, if highest spatial resolution or 

least error is desired then CSDA or CDDA are 

recommended, respectively. For most cases or when in 

doubt, the central difference derivative approximation 

method is recommended for lower noise. 

Table 4. Shepp Logan central case RMSE, SSIM, and FWHM 

results at different signal to noise ratios 
SNR RMSE SSIM FWHM(mm) 

20 0.7986 0.1945 1.985 

30 0.1179 0.6396 1.288 

40 0.1162 0.8725 1.192 

50 0.1161 0.9029 1.115 

60 0.1161 0.9058 1.080 

70 0.1161 0.9062 1.094 

80 0.1161 0.9062 1.080 

90 0.1161 0.9062 1.083 

100 0.1161 0.9062 1.087 

110 0.1161 0.9062 1.092 

120 0.1161 0.9062 1.090 

130 0.1161 0.9062 1.090 

140 0.1161 0.9062 1.090 

 

ACKNOWLEDGMENT 

This work was partially supported by the NSF CAREER 

Award CBET-1540898. 

 

REFERENCES 

 
[1] A. Kak and M. Slaney. “Principles of Computerized Tomographic 

Imaging, IEEE press, 1994 

[2] L. Shepp and B. Logan. “The Fourier reconstruction of a head 
section,” IEEE Transactions on Nuclear Science, NS-21 (3): 21-43 

[3] G. Zeng. Medical image Reconstruction: A conceptual Tutorial, 
China Higher Education Press, 2009 

[4] A. Oppeinheim and R. Schafer. Discrete-time signal processing, 
Prentice hall, 2010. 

[5] R. Lyons. Understanding Digital Processing, Prentice hall, 2010 

[6] E. Weisstein. Finite Difference, From Mathworld-A Wolfram Web 
Resource, https://mathworld.wolfram.com/FiniteDifference.html. 

[7] E. Weisstein. Central Difference, From MathWorld-A Wolfram Web 
Resource, https://mathworld.wolfram.com/CentralDifference.html 

[8] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions 
with Formulas, Graphs, and Mathematical Tables, New York, 1972 

[9] C. De Boor. A practical Guide to Splines, Springer-Verlag, 1978 

[10] W. Press and S. Teukolsky. Numerical Recipes in C: The Art of 
Scientific Computing, Cambridge University Press, 1988 

[11] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality 
assessment: from error visibility to structural similarity,” Image 
Processing, IEEE Transactions on, vol. 13, pp. 600-612, 2004 

[12]  F. Schlueter, G. Wang, P. Hsieh, J. Brink, D. Balfe, and M. Vannier, 
“Longitudinal Image Deblurring in Spiral CT,” Medical Physics, 
1994 

[13] G. Ramachandran and A. Lakshminarayanan. “Three dimensional 
reconstructions from radiographs and electron micrographs: 
Application of convolution instead of Fourier transforms,” Proc.Nat. 
Acad. Sci., vol.68, pp. 2236-2240, 1971 

[14] E. Weisstein. Cubic Spline. From MathWorld—A Wolfram Web 
Resource. http://mathworld.wolfram.com/CubicSpline.html 

[15] S. Smith. The Scientist and Engineer’s Guide to Digital Signal 
Processing, California Technical Publishing, 1997 

 

 

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

145

http://mathworld.wolfram.com/CubicSpline.html



