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3D X-ray Computed Tomography reconstruction
using sparsity enforcing Hierarchical Model based

on Haar Transformation
Li Wang, Ali Mohammad-Djafari, Nicolas Gac and Mircea Dumitru

Abstract—In this paper, we consider the 3D X-ray CT re-
construction problem by using the Bayesian approach with a
hierarchical prior model. A generalized Student-t distributed
prior model is used to enforce the sparse structure of the
multilevel Haar Transformation of the image. Comparisons with
some state of the art methods are presented, showing that the
proposed method gives more accurate reconstruction results and
a faster convergence. Simulation results are also provided to
show the effectiveness of the proposed hierarchical model for
a reconstruction with more limited projections.

Index Terms—Computed Tomography (CT), Bayesian Ap-
proach, Hierarchical Model, Generalized Student-t distribution,
Joint Maximum A Posterior (JMAP).

I. INTRODUCTION

An introduction of the development of Tomography and
several analytic and algebraic state of the art reconstruction
methods are presented in [1]. In X-ray CT, the intensity of
X radiation is attenuated when passing through the object,
and the parameters to be reconstructed are the linear attenu-
ation coefficients inside the object under the test. The Radon
Transform (RT), presented in detail in [1], is one of the most
commonly used forward modeling when treating the 3D X-ray
CT projection problem, with the expression:

g(r, φ) = Rf(x, y) =

∫
Lr,φ

f(x, y) dl (1)

where f(x, y) represents the attenuation coefficient, r is the
perpendicular length from center point of coordinate and φ is
the considered X ray angle. Lr,φ is the length of ray (r, φ)
passing through the object.

There have been different analytic methods to solve the
reconstruction problem, for example the Back-Projection (BP)
[2], the Filtered Back-Projection (FBP) [2], [3], etc. We
may mention here the FBP method, which has a very good
performance when dealing with sufficient detected data. It
can be summarized as f̂ = BF−1 |Ω|F g where F and F−1

represent the direct and the inverse Fourier Transform (FT),
|Ω| a modulated filter and B the Back Projection.

A. Deterministic Regularization based methods

Comparing with the conventional FBP method, the regu-
larization and statistical methods give more satisfactory re-
construction results [3]–[5]. The statistical methods can also
give more robust and precise results comparing with FBP
reconstruction method, especially in the low dose and time
limit situations where insufficient data are given.

In many algebraic and statistical methods, one consider the
linear forward model:

g = Hf + ε (2)

where g ∈ RM×1 represents the projection data, f ∈ RN×1
the object and ε ∈ RM×1 the additive noise. Matrix H ∈
RM×N corresponds to the linear projection system. In the
regularization methods, the result of reconstruction is obtained
by optimizing the criterion which combines a data-model term
and the regularization terms.

A general criterion of the regularization method is J (f) =
‖g −Hf‖2 + λR(f) where R(f) is the regularization term
and λ is called the regularization parameter. We list out
some conventional regularization reconstruction methods: (a)
the Least Square (LS) method with R(f) = 0 where the
estimating result minimize the disparity but is not guaranteed
to be precise because of the ill-posedness; (b) the Quadratic
Regularization (QR) method [4] with R(f) = ‖Df‖2 which
enforces the global smoothness of the estimated result and
(c) the Total Variation (TV) method [6], where the difference
of neighbour pixels are enforced to be sparse with R(f) =
‖Df‖1. By using l1 norm, the sparsity of the penalty term
is enforced. The appearance of the non-differentiable l1 term
leads to difficulties for the computation of the gradient of
constraints. Many methods have been studied in order to solve
this l1 norm optimization problem, for example the Newton’s
method [7] and the Split Bregman method [6].

Note that in all the above mentioned regularization methods,
there is a parameter λ controlling the trade-off of the disparity
and the regularization penalty, which need to be fixed. There
have been different methods to choose a suitable value for λ,
for example the Cross Validation (CV) and L-curve methods,
with details presented in [8], [9]. However, the computation
for choosing this parameter should be done for each simulation
and different dataset, which is not practical. Bayesian methods,
therefore, are often used to estimate the parameters and
variables simultaneously.

B. Bayesian Method
As mentioned above, the Bayesian methods solves the

reconstruction problem as well as the estimation of the param-
eters at the same time thanks to appropriate prior modelling.
In short, by using the Bayes formula, the complete solution of
the inverse problem is provided by the posterior distribution:

p(f ,θ|g) =
p(g|f ,θ)p(f |θ)p(θ)

p(g)
, (3)
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Which is then used to infer both on f and on θ.

II. THE SPARSITY ENFORCING HIERARCHICAL HAAR
TRANSFORM BASED METHOD (HHBM)

The HHBM method presented in this paper is an extension
of the work presented in [10]. Instead of estimating only
the hidden variable z and obtaining the final reconstruction
result f by a post-processing, here a more general model is
proposed, and the method is tested on 3D object reconstruction
simulations.

Typically the sparse property of the Haar transformation
coefficient is enforced by using three kinds of distributions:
the Generalized Gaussian distributions, the Gaussian Mixture
distributions and the heavy tailed distributions.

The standard Student-t distribution is heavy tailed, but from
the definition of its variance we easily figure out that there is
a lower limit of the variance value of Student-t distribution:
Var[f ] = ν

ν−2 > 1, (ν > 2). This limit implies that this
heavy-tailed distribution can’t have a small variance, therefore
the sparsity couldn’t be intensively enforced. In this paper
we use a generalization of Student-t distribution (Stg) which
can be obtained by using the marginalization of the Normal-
Inverse Gamma bi-variate distribution:

Stg(f |α, β) =

∫
N (f |0, v)IG(v|α, β) dv. (4)

This generalization of Student-t distribution adds a supple-
mentary parameter compared to the standard one, and hence
more capable to control the level of sparsity of the prior
distribution.

A. Hierarchical Bayesian Model of HHBM
The additive noise is defined belonging to an i.i.d. Gaus-

sian law with mean equal to zero and unknown variance
vector vε: p(ε|vε) = N (ε|0,V ε), where V ε = diag [vε]
is a diagonal matrix. According to the linear forward model
shown in Eq.(2), we obtain an expression for the likelihood:
p(g|f ,vε) = N (g|Hf ,V ε).

In the considered applications, generally the object to be
reconstructed is piece-wise homogeneous, considering that it
consists of several different materials. With this property, an
information which can be considered as a prior knowledge is
the sparseness of the contours.

The sparse representation of the prior piece-wise continuous
image used in this paper is the multilevel Haar Transformation.
A vector z is used to present the l-level Haar transformation
coefficients of f . Prior distribution of f depends on z:
p(f |z,vξ) = N (f |Dz,V ξ) where D represents the inverse
Multilevel Haar transformation operator, and the additive noise
ξ is considered to be i.i.d. Gaussian distributed. Definition of
diagonal matrix: V ξ = diag [vξ].

The vector z = [z1, z2, · · · , zN ], therefore, is sparse. As
mentioned above, the generalized Student-t distribution is used
in order to enforce the sparsity. By using the Normal-Inverse
Gamma property given in Eq.(4), the prior distribution for z
is: {

p(z|vz) = N (z|0,V z) where V z = diag [vz] ,

p(vz|αz0 , βz0) =
∏N
j IG(vzj |αz0 , βz0),

(5)

where the elements of vector vz are supposed to be i.i.d.
On the other hand, when considering the variance of two

noises: vε and vξ, by knowing that the variance is posi-
tive, and the fact that the majority of the values are small,
we choose the Inverse Gamma distribution to model them:
p(vε|αε0 , βε0) =

∏M
i IG(vεi |αε0 , βε0) and p(vξ|αξ0 , βξ0) =∏N

j IG(vξj |αξ0 , βξ0).
With all the proposed prior distributions, the model contain-

ing all the variables, parameters and hyper-parameters is:

p(g|f ,vε) ∝ |V ε|−
1
2 exp

[
− 1

2
(g −Hf)T V −1

ε (g −Hf)
]
,

p(f |z,vξ) ∝ |V ξ|−
1
2 exp

[
− 1

2
(f −Dz)T V −1

ξ (f −Dz)
]
,

p(z|vz) ∝ |V z|−
1
2 exp

[
− 1

2
zTV −1

z z
]
,

p(vz|αz0 , βz0) ∝
∏N
j v

−(αz0+1)
zj exp

[
−βz0v−1

zj

]
,

p(vε|αε0 , βε0) ∝
∏M
i v

−(αε0+1)
εi exp

[
−βε0v−1

εi

]
,

p(vξ|αξ0 , βξ0) ∝
∏N
j v

−(αξ0+1)

ξj
exp

[
−βξ0v

−1
ξj

]
.

(6)
The corresponding directed acyclic graph (DAG) of the

proposed model is shown in Fig.(1).
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Fig. 1: DAG of proposed model.

B. Bayesian Inference
Via the Bayesian inference, the posterior law is obtained

from the likelihood and priors:

p(f , z,vε,vξ,vz|g) ∝ p(g|f ,vε)p(f |z,vξ)p(z|vz)
· p(vε)p(vξ)p(vz)

(7)

From the posterior distribution obtained, different estimation
methods can be used. Mainly there are two options: Posterior
Mean (PM) and Joint Maximum A Posterior (JMAP) [11].
The first one can be computed either by MCMC methods [12],
Variational Bayesian Approximation (VBA) [13] or any other
approximation methods. However, the computational costs of
these methods are too high for 3D applications. This is the
reason why we use the JMAP method to estimate all the
variables iteratively in this paper.

C. Estimation
The JMAP computation aims at iteratively and alternately

estimate the variables and parameters by maximizing the
posterior:

(f̂ , ẑ, v̂ε, v̂ξ, v̂z) = arg max
f ,z,vε,vξ,vz

{p(f , z,vε,vξ,vz|g)} (8)
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30iter

phantom size: 64*64*64
64 projections 32 projections

40dB 20dB 40dB 20dB
QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM

errf 0.1138 0.0598 0.0228 0.1354 0.0636 0.0739 0.1537 0.1296 0.0696 0.1799 0.1333 0.1080
errg 0.0020 0.0013 5.1537*e-4 0.0046 0.0060 0.0105 0.0015 0.0030 0.0019 0.0030 0.0077 0.0102
Tc 0.2561 0.7681 1.8336 0.2346 0.7880 2.1800 0.2287 0.7526 1.6044 0.2121 0.7185 1.5533

TABLE I: Comparison of NMSE of reconstructed phantom with 30 iterations and the computation time of each iteration by
using different methods.

Because of the huge size of data, the descend gradient algo-
rithm is used since the computation of big size matrix inversion
is too expensive. The iterative updating rule is:

iter : f̂
(k+1)

= f̂
(k)
− γ̂(k)

f ∇J (f̂
(k)

);

iter : ẑ(k+1) = ẑ(k) − γ̂(k)
z ∇J (ẑ(k));

v̂zj =

(
βz0 +

1

2
ẑ2j

)
/ (αz0 + 3/2) , ∀j ∈ [1, N ];

v̂εi =

(
βε0 +

1

2

(
gi −

[
Hf̂

]
i

)2)
/ (αε0 + 3/2) , ∀i ∈ [1,M ];

v̂ξj =

(
βξ0 +

1

2

(
f̂j − [Dẑ]j

)2)
/ (αξ0 + 3/2) , ∀j ∈ [1, N ],

(9)

where

J (f) =
1

2

∥∥∥∥V − 1
2

ε (g −Hf)

∥∥∥∥2 +
1

2

∥∥∥∥V − 1
2

ξ (f −Dz)

∥∥∥∥2 ;

J (z) =
1

2

∥∥∥∥V − 1
2

ξ (f −Dz)

∥∥∥∥2 +
1

2

∥∥∥∥V − 1
2

z z

∥∥∥∥2 ;

γ̂
(k)
f =

(∥∥∥∇J (f̂
(k)

)
∥∥∥2) /(∥∥∥Ŷ εH∇J (f̂

(k)
)
∥∥∥2 +

∥∥∥Ŷ ξ∇J (f̂
(k)

)
∥∥∥2) ;

γ̂
(k)
z =

(∥∥∥∇J (ẑ
(k)

)
∥∥∥2) /(∥∥∥Ŷ ξD∇J (ẑ

(k)
)
∥∥∥2 +

∥∥∥Ŷ z∇J (ẑ
(k)

)
∥∥∥2) ,

(10)

where ∇J (·) is the gradient of J (·). γ̂f and γ̂z are
obtained by using optimized step length strategy, see [14].
The initialization of the hyper parameters αs and βs are:
αz0 = αε0 = αξ0 = 2 + ε1, βz0 = βε0 = βξ0 = ε2 where ε1
and ε2 are small values close to zero.

III. SIMULATION RESULTS

In the simulations, the Shepp Logan phantom with size 643

is used as the original object. It consists of several homoge-
neous zones, each of which corresponds to a different material.
Projections are applied in angles uniformly distributed from 0◦

to 180◦. The reconstruction performance is measured in terms
of the Normalize Mean Square Error (NMSE), or the relative

error δf , defined as δf = NMSE =
∥∥∥f̂ − f∥∥∥2 / ‖f‖2, where

f̂ is the reconstructed result.
The comparison is between a) the proposed method, b)

the Quadratic Regularization (QR) method and c) the Total
Variation (TV) method. The simulation of TV method is
realized by using the Split Bregman method [6]. The descend
gradient optimization algorithm is used in HHBM method as
mentioned in Eq.(9).

In order to deal with 3D data, considering the big data
size constraint, a GPU processor is used. Several toolbox are
accessible for usage of GPU in MATLAB. Here we used the

ASTRA toolbox [15], which facilitates the coding with GPU
in MATLAB.

The middle slice of the reconstructed phantom is shown in
Fig.(2). The left figures show the reconstructed middle slices
of the 3D Shepp-Logan phantom, and on the right there are
the details of the corresponding middle slice.

Fig. 2: The middle slices and zones of the reconstructed 3D
Shepp-Logan phantom by using different methods with 1/4 of
total projections with noise of SNR=40dB. Top: QR, middle:
TV, bottom: HHBM.

The NMSE by using different methods are compared.
Fig.(3) shows the δf of reconstructed Shepp Logan phantom
of size 643 by using 64 projections, when SNR=40dB and
20dB. It shows that when the noise is at a low level, the
HHBM method converges much faster and gives a more
precise reconstructed result, when with a more important
noise, the TV method keeps robust, but the HHBM method
still converges faster than the others. Fig.(4) compares the δf
of the reconstructed phantom of size 643 with 32 projections.
It shows that when there are insufficient projection data,
the HHBM method remains robust, and the convergence is
efficient. This property of the HHBM method is important in
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the applications where the reconstruction time is important and
the results need to be obtained within a few iterations.

More results are given in Tab.(I), where errf and errg
are respectively the NMSE of reconstructed phantom and
reconstructed projections after 30 iterations. The value Tc
shows the computation time for each iteration. From the table
and the figures we can see that, even though the computation
time for one iteration of HHBM is longer than TV method
(about 2 times), the number of iterations needed for reach-
ing convergence by using HHBM is much smaller than TV
method.
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Fig. 3: Comparison of NMSE of reconstructed Shepp Logan
phantom of size 643 by using different methods with 64
projections and noise of (a) 40dB and (b) 20dB.
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Fig. 4: Comparison of NMSE of reconstructed Shepp Logan
phantom of size 643 by using different methods with 32
projections and noise of (a) 40dB and (b) 20dB.

IV. CONCLUSION

We proposed to enforce sparsity of the multi-level Haar
Transformation of the piece-wise continuous images by using
a Generalized Student-t distribution, and use the Bayesian
method to estimated the image and the transformation coef-
ficients simultaneously. We compared the proposed HHBM
method with the Quadratic Regularization and the Total Vari-
ation method. We conclude from the simulation results that
the HHBM method is more robust for cases with less number
of projections and higher noise level. The convergence speed
is faster than the state of the art methods. As future work,
we search for better sparse representation bases, and a more
general Bayesian estimation going to Posterior Mean (PM)
computation via Variational Bayesian Approximation (VBA).
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