
1Volumetric Computed Tomography Reconstruction
with Dictionary Learning

Ti Bai, Hao Yan, Xun Jia, Steve Jiang, Ge Wang, Xi Chen and Xuanqin Mou

Abstract—Despite the rapid developments of x-ray cone-beam
CT (CBCT), image noise still remains a major issue for the
low-dose CBCT. Iterative reconstruction algorithms with 2D
dictionary learning (DL) were validated for fine structures and
suppressed noise in the case of low-dose CT reconstruction.
However, an enhanced version for volumetric CBCT is absent.
Besides, it is recognized that representation efficiencies of the
sparsity-promotion regularizers are of primary importance for
the success of the image processing tasks. In this work, a
sparse constraint based on the 3D dictionary is incorporated
into a statistical iterative reconstruction, defining the 3D-DL
reconstruction framework. From a statistical viewpoint, the
distributions of the representation coefficients associated with
the 2D/3D dictionaries are analyzed to compare their efficien-
cies in representing volumetric images. The whole program is
implemented on graphic processor units (GPU) to boost the
computation efficiency. Experiments demonstrated that the 3D
dictionary allows a much higher representation efficiency and
a better image quality compared to the 2D dictionary case.
Regarding the tested radiation therapy datasets, with a volume
of 512×512×512 and a projection dataset of 512×384×363, the
whole reconstruction process can be finished within 5 minutes.

Index Terms—Dictionary learning, sparse representation, low-
dose CT, cone-beam CT, noise suppression, GPU

I. INTRODUCTION

AS a powerful tool to visualize internal structures of
an object in a non-invasive fashion, x-ray computed

tomography (CT) has experienced rapid developments over the 
past decades. Due to volumetric coverage during fast gantry 
rotation, isotropic spatial resolution and high tube efficacy, 
cone-beam CT (CBCT)[1] plays an important role in many 
scenarios, such as patient setup in radiation therapy[2], intra-
operative imaging[3], [4], and maxillofacial visualization[5].
In preclinical research, micro-CBCT is often used to map 
organs of small animals[6].

Despite the aforementioned applications, there are increased 
demands for the radiation dose reduction as low as reasonably
achievable (ALARA)[7], [8]. Basically, low-dose CBCT can 
be achieved by either collecting fewer projections (few-view
protocol) or reducing the exposure level (low-exposure proto-
col). In this work, we will focus on the low-exposure protocol,
as it can be simply implemented by reducing the tube current 
and is advantageous sampling-wise. Low-exposure protocol,
however, would inevitably result in noisy projection data, and
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data noise would be propagated into reconstructed images,
possibly rendering the images less useful or useless.

A great effort has been devoted to image noise reduction.
Specifically, by accommodating the measurement statistic-
s, modeling the data acquisition geometry, and enforcing
physical constraints, the regularized iterative reconstruction
algorithms often produce superior image quality with low SNR
measurements, and hence having become increasingly popular.
In the context of iterative reconstruction, an appropriate physi-
cal constraint about the underlying image, i.e., the regularizer,
is regarded as being of primary importance (e.g., references[9],
[10], [11], [12], [13], [14]). Thanks to the rapid development
of compressive sensing theory[15], the sparsity-promotion
regularizers have been successful, most of which could be
applied to both the few-view and low-exposure protocols. For
example, Yu et al. and Sidky et al. proposed an iterative recon-
struction algorithm by minimizing the total variation (TV) of
the image[16], [17]. Provided a high-quality image which re-
sembles the image under reconstruction, Chen et al. developed
a method referred to as prior image constrained compressive
sensing (PICCS) for accurate reconstruction of dynamic CT
images[11]. In the low-dose CBCT domain, many iterative
reconstruction algorithms were published, with an emphasis
on the design of the regularizer. Sidky et al. developed a 3D-
TV minimization method for volumetric image reconstruction
from a circular CBCT scan[10]. Jia et al. constructed an
iterative CBCT reconstruction framework regularized by the
tight frame (TF) based sparse representation[18], attaining
competitive performance, if not better, compared to the TV
minimization method.

Recently, learning based image processing techniques
gained significant interest, with a primary example known
as dictionary learning. The basic idea is a well-accepted
assumption that in the natural scene images, there exist
abundant structures which could be sparsely represented with
a redundant dictionary. The dictionary can be learned from
images sharing similar spatial structures. This property was
helpful in the image restoration tasks, such as denoising, super-
resolution, and deblurring[19]. Inspired by the successes, the
dictionary learning based image restoration techniques were
introduced for low-dose CT imaging. For example, Xu et al.
incorporated a dictionary learning based sparse constraint into
the statistical x-ray CT iterative reconstruction framework. It
enhances the image quality such that image noise is effectively
reduced while subtle structures are well retained[12]. Li et
al. combined the dictionary learning based sparse constraint
and the TV minimization based constraint together to facilitate
dual-energy CT reconstruction[20].

Currently, most of the dictionary learning based sparse
representation techniques are for 2D cases. Intuitively, 3D
structures in volumetric images should be directly targeted
by training a 3D dictionary, which consists of 3D atoms.
In this paper, we report a 3D dictionary learning (3D-DL)
based reconstruction framework for low-dose volumetric CT
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and perform a systematic investigation on this new technique.
First, based on two realistic experiments, we qualitatively
and quantitatively compare the performance of the proposed
3D-DL method to other competing algorithms, such as the
previous 2D dictionary learning method and the TF method.
In the field of natural scene statistics, it is recognized that
the sparser (more efficient) an image could be represented
with a group of basis (e.g., the dictionary in our context),
the more efficient the later processing stages could be (e.g.,
deliver higher-quality reconstructions in our context)[21], [22],
[23]. Motivated by this knowledge, we then evaluate the repre-
sentation efficiencies of the 2D/3D dictionaries for structures
in volumetric images. Finally, to make the proposed method
clinically practical, we parallelize the whole program on the
GPU using several algorithmic tricks.

II. METHODS AND MATERIALS

A. Formulation

For completeness, we will first review the iterative x-ray
CT reconstruction and introduce related notations. For more
details, please refer to the references[12], [24]. Basically,
the objective of an image reconstruction is to find the un-
known true image x̂ ∈ RN×1 from observed measurements
y ∈ RM×1 (the transmission data through log transform)
defined by y = Ax̂ + ε, where A ∈ RM×N is the system
matrix, ε ∈ RM×1 denotes the measured noise which can be
modeled as a zero-mean Gaussian distribution with respect
to ray-dependent variances[25], and M and N are integers.
By incorporating some physical constraints, the regularized
statistical iterative reconstruction is formulated as

min
x
||Ax− y||2W + βR(x), (1)

where ||u||2W = uTWu and W = diag{wii} ∈ RM×M is
a diagonal matrix consisting of the statistical weights that are
inversely proportional to the measurements variances[25], β
denotes the regularization parameter controlling the relative
weight between the fidelity term ||Ax − y||2W and the regu-
larization term R(x).

Specifically, the dictionary learning based statistical iterative
reconstruction can be written as

min
x
||Ax− y||2W + β

∑
s

(||Esx−Dαs||22 + γ||αs||p), (2)

where Es denotes an extraction operator for the sth data block
which can be sparsely represented by a learned dictionary D,
and the associated coefficients are αs, γ is the Lagrangian
multiplier, and ||αs||p denotes the `p norm of αs with p ≥ 0.

In Eq. (2), the sparse constraint ||αs||p can be enforced in
several ways. A direct way is to minimize the quasi-`0-norm of
the sparse coefficients with p = 0, that is, the number of non-
zero elements. An alternative way is to choose p = 1, so as to
minimize the `1-norm which is a best convex approximation
of the quasi-`0-norm. Indeed, both the quasi-`0-norm and
the `1-norm have been widely employed, and they result in
comparable image qualities[12], [26], [27]. Particularly, by
setting p = 1, Eq. (2) can be readily understood in a Bayesian
viewpoint, where the sparse coefficients are supposed to be

modeled with a zero-mean Laplacian distribution, which is
highly peaked around zero with heavy tails[28].

B. 3D dictionary

Equation (2) is the general framework for 2D/3D dictionary
learning based statistical iterative reconstruction. When y is
the sinogram of a 2D CT slice image, D ∈ RK×L is a 2D
dictionary consisting of L 2D atoms of P×Q with K = P×Q.
Similarly, when y is composing of various 2D projections with
respect to a volumetric image, D ∈ RK×L is a 3D dictionary
comprising of L 3D atoms of P × Q × R with K = P ×
Q×R, which represent the local structures of the volumetric
image. Note that each column of the dictionary D is a vector
rearranging from the corresponding 2D/3D atom. A simple
illustration about the 2D/3D dictionary learning based sparse
representation is given in Fig. (1).

C. Optimization algorithm

An alternating minimization scheme is employed to solve
Eq. (2), where p = 0 is adopted in this work. It allows us to
obtain the solution by alternatingly solving the following two
sub-problems:

min
x
||Ax− y||2W + β

∑
s

(||Esx−Dαs||22), (3)

min
αs

||xs −Dαs||22 + ξ||αs||0. (4)

The sub-problem (3) is of simple quadratic form, which can
be optimized by the OS based separable quadratic surrogate
(OS-SQS) method[24]:

xj+1 = xj−
VAT

CWC(ACx
j − yC) + β

∑
sE

T
s (Esx

j −Dαs)

ATWAI + β
∑
sE

T
s EsI

,

(5)
where V is the number of the subsets, subscript C denotes
one subset of the projections, superscript j denotes the jth

iteration, I is the unity vector, T denotes the transpose opera-
tor. Physically speaking, the second term in the numerator of
Eq. (5) means that given any extracted data block Esx

j , find
its sparse representation and then put the denoised version
back to serve as the prior information. To accelerate con-
vergence of the above algorithm, two additional algorithmic
tricks are employed, i.e., Nesterov’s weighting strategy[29]
and double surrogates strategy[30]. The Nesterov’s weighting
strategy could achieve a nearly optimal convergence rate for
the first-order methods by utilizing the previous iterations
to adjust the current update direction. The double surrogates
strategy allows us to update the gradient of the regularization
term less frequently compared to the number of subsets, and
hence reduce the computational cost per iteration.

To optimize the sub-problem (4), we rewrite it as the
following equivalent problem:

min
αs

||αs||0, s.t., ||Esx−Dαs||22 ≤ ε. (6)

Problem (6) is a typical sparse coding task, and a lot of
solvers have been proposed[31], [32], [33]. Here, a Cholesky
decomposition based orthogonal matching pursuit (OMP) al-
gorithm is employed[34].
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Fig. 1. Illustration of 2D (first row) and 3D (second row) dictionary learning based sparse representations.

D. Experiments

To evaluate the 3D-DL method, clinical applications in ra-
diation therapy are carried out. We first perform comparison s-
tudies among different regularizers. Then, a statistical analysis
is conducted for the representation efficiencies of the 2D/3D
dictionaries on the structures in the CBCT images. Finally, we
conduct the computational cost and convergence analysis for
the whole program. All the algorithms are implemented in the
CUDA 7.0 programming environment on a NVIDIA GeForce
GTX 980 video card which is installed on a personal computer
(Intel i5-4460 CPU and 8GB RAM).

1) Experimental data: Two realistic datasets were collected
including one head-neck (HN) full-fan scan and one prostate
half-fan scan in the image guided radiation therapy (IGRT).
The HN and prostate patient datasets were collected from an
on board imager integrated in a TrueBeam medical accelerator
(Varian Medical System, Palo Alto, CA), where the source-
to-axis and source-to-detector distances are 1000mm and
1500mm, respectively. The collected projection data were
deidentified in the Radon space. They were rebinned using a
2× 2 mode, resulting an imager of 512× 384 with a detector
size of 0.776 × 0.776mm2. To be specific, the HN patient
was scanned in a full-fan mode to acquire 363 projections
in a 200 degrees arc, the exposure level was 0.4 mAs per
projection. The prostate patient was scanned in a half-fan mode
with a 160mm lateral shift, acquiring 656 projections in 360
degrees with an exposure level of 1.25 mAs per projection. To
evaluate the potential for dose reduction, Poisson noise with
levels of 1 × 104 and 3 × 104 photon incidents per ray were
superimposed into the above datasets. This generated low-dose
HN and prostate patient cases, respectively. The reconstructed
images were of 512×512×512 and 512×512×256 with voxel
sizes of 0.6× 0.6× 0.6mm3 and 1× 1× 1mm3, respectively.

2) Comparison studies among different regularizers: In
this study, we qualitatively and quantitatively compare the
proposed 3D-DL method with two existing methods, namely,
2D dictionary learning based method [12] and TF method[18].
Specifically, for the 2D dictionary learning based method,
three 2D dictionary learning based sparse constraints are
consecutively applied for the transversal, coronal and sagittal
views for a fair comparison, though this strategy suffers
from heavy computation burden. Furthermore, to illustrate the
inherent 2D property of the 2D dictionary learning based
method for volumetric CT reconstruction, three additional
strategies are employed to utilize the 2D dictionary learning
based regularizer in a slicewise fashion for each of the three
different views. The employed 2D dictionary contains 256
atoms of 8×8 trained from the planning volumetric CT image
of a third prostate patient. For a fair comparison, in the 3D-
DL method, the employed 3D dictionary also contains 256 3D

atoms of 4× 4× 4 trained from the same sample source. For
simplicity, we will use the following abbreviations to represent
the different methods:

3D-DL: the proposed 3D-DL method
2D-DL: three 2D dictionary learning based sparse
constraints are consecutively enforced on all the three
views
TF: the TF method
881-DL: the 2D dictionary learning based sparse
constraint is only enforced on the transversal view
in a slicewise method
818-DL: the 2D dictionary learning based sparse
constraint is only enforced on the coronal view in
a slicewise method
188-DL: the 2D dictionary learning based sparse
constraint is only enforced on the sagittal view in
a slicewise method

The OS acceleration technique is applied on all the cases
by evenly distributed the datasets into several subsets. To be
specific, 11 subsets with 33 projections per subset, denoted as
11(×33) OS protocol hereafter, is used for the HN patient
case. 8(×82) OS protocols is used for the prostate patient
case. The whole optimization program is terminated after 10
iterations for both cases. Both datasets are also reconstructed
by the FDK algorithm to benchmark the regularized iterative
reconstructions.

For both cases, because the regular dose reconstructions
are available, the results are quantified with the root mean
squared errors (RMSE) and the structure similarity (SSIM)
index (the closer to 1, the better the image is)[35]. The RMSE
is calculated based on the whole 3D volume. Because the
SSIM index is devised for the 2D images, in this work,
the SSIM index is calculated based on a single presented
transversal slice.

3) Analysis for the representation efficiencies of the 2D/3D
dictionaries: In the field of neuroscience, it has been found
that the receptive fields of the simple cells in human primary
visual cortex can be characterized as being spatially localized,
oriented and bandpass[36]. These are consistent with the
statistical structures of the natural scene images if they are ef-
ficiently coded[37]. Olshausen et al. suggested that a learning
algorithm attempting to maximize the sparseness (and hence
maximize the representation efficiency) of the representation
coefficients can produce a complete set for these localized,
oriented and bandpass structures[21]. The philosophy behind
this conjecture is that all the trained patterns should be able
to represent the structures of the natural scene images as
efficiently as possible by reducing the statistical dependences.
That is, the sparser the representation coefficients are, the more
the trained patterns like the characteristics of the receptive
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fields[22], [23]. Moreover, the resultant sparser coefficients
of the image can facilitate the later processing stages more
efficiently.

Regarding these facts, it is important to explore the rep-
resentation efficiencies of the 2D/3D dictionaries for the
structures of the volumetric images. The result can be used to
justify the 3D-DL method in a natural scene statistical view-
point. Specifically, it is well-accepted that the representation
coefficients of the natural scene images shall follow a zero-
mean Laplacian distribution that is highly peaked around zero
with heavy tails[28]. Therefore, we conduct the representation
efficiency analysis by investigating the resultant Laplacian
distributions. It is expected that the narrower the Laplacian
distribution is, the more efficient the trained dictionary can
represent the structures, and hence facilitate the later process-
ing stages better, such as the reconstruction task in our context.

In this study, the regular dose FDK reconstructions of the
HN patient and prostate patient are employed to explore the
representation efficiencies. In details, for the HN patient case,
a group of 1 × 105 data samples of 4 × 4 × 4 are randomly
extracted from the regular dose FDK reconstruction. Then,
three groups of 1 × 105 2D data samples of 8 × 8 × 1,
8 × 1 × 8 and 1 × 8 × 8 are randomly extracted from the
transversal, coronal and sagittal views, respectively. The same
rules are also applied on the prostate patient case. The above
data samples are fed into the following equation to obtain the
corresponding representation coefficients

min
α
||X−Dα||22 + γ||α||1, (7)

where each column of X is a vector stacking representation of
the 2D/3D data sample, D is the 2D/3D dictionary, α denotes
the resultant representation coefficients, and γ is a Lagrangian
multiplier. Equation (7) is solved with the SPAMS software
package in this work. We will analyze the distributions of the
resultant coefficients and calculate the associated variance of
each distribution to quantify the representation efficiencies.

4) Computational cost and convergence analysis: One of
the main drawbacks of an iterative reconstruction algorithm is
the heavy computational cost. The computationally intensive
sparse coding stage in the dictionary learning based methods
aggravates this situation further. Without loss of generality,
we will take the HN and prostate patient cases as examples
to conduct the computational cost and convergence analysis.
It is believed that similar observations can be also achieved
from the other cases. The time overhead is calculated as the
averaged time consumption of the regularization term update
among all the 10 iterations, i.e., the averaged time consumption
for all the extracted data blocks to be sparsely coded. In
addition, to investigate the computational cost of the 3D-DL
method, we will also conduct computational cost analysis in
terms of the data fidelity term update and the regularization
term update, and compare with the other involved methods
in this work. The computational costs for these two parts are
calculated as the averaged time consumptions among all the
10 iterations. Lastly, to experimentally study the convergence
property of the 3D-DL method, we will plot the curves of the
change amount of the images between consecutive iterations
vs the iteration number, i.e., ∆x = ||xj+1−xj ||22 vs j, where

j is the iteration number. Generally speaking, if ∆x is smaller
than a pre-specified tiny tolerance, then the algorithm could
be regarded as converged.

III. RESULTS

Figure (2) demonstrates the transversal view of the re-
constructed images for the HN patient case. It is observed
that the low-dose FDK reconstruction is overwhelmed by
the noise, while the noise is substantially suppressed by the
regularized iterative reconstruction algorithms. As indicated by
the zoomed-in ROIs in Fig. (2), if the 2D dictionary learning
based sparse constraint is enforced on only one view, the
unprocessed views exhibit directional streak artifacts, such as
the horizontal and vertical streak artifacts corresponding to
the 818-DL and 188-DL sub-figures, respectively. Regarding
the processed views, the structures are distorted. For example,
as indicated by the arrow in the 881-DL zoomed-in ROI of
Fig. (2), part of the soft bone is missing compared to the reg-
ular dose FDK reconstruction. The directional streak artifacts
can be alleviated if the 2D dictionary learning based sparse
constraint is enforced on all the three views consecutively,
i.e., the 2D-DL method. However, compared to the 3D-DL
method, the 2D-DL method exhibits lower spatial resolution
and higher image noise, as indicated by the zoomed-in ROIs
in Fig. (2). Another disadvantage of the 2D-DL method is
the inherent high computational cost, considering the fact
that three individual sparse coding stages are required for
regularization. Regarding the TF method, one cannot well
distinguish the subtle structures which are blurred due to the
reduced resolution and the remained noise in the high contrast
region, as indicated by the TF sub-figure in Fig. (2). On the
other hand, it can be seen that the 3D-DL method achieves
promising results in enhancing the anatomical structures and in
removing the noise effectively, and hence validates its efficacy.
Quantitatively, with the regular dose FDK reconstruction as the
reference, the RMSE and SSIM values are listed in Table I.
The lowest RMSE and the highest SSIM further verify that
the 3D-DL method outperforms other algorithms.

The transversal views of the reconstructed images corre-
sponding to the prostate patient case are in Fig. (3). Figure (4)
demonstrates the zoomed-in ROIs for the reconstructions in
Fig. (3) with respect to different methods. It is shown that the
3D-DL method efficiently suppresses noise and well retains
anatomical structures both for the low contrast and high
contrast regions. Regarding the TF method, the structures are
contaminated by the remained pepper-like noise, as shown by
the TF sub-figure in Figs. (3) and (4). From Fig. (3), it can
be seen that the 2D-DL method exhibits stronger noise with
comparable resolution, if not inferior, compared to the 3D-
DL method, this phenomenon could be more clearly observed
from the zoomed-in ROIs in Fig. (4), as indicated by the arrow
in the 2D-DL sub-figure. On the other hand, directional streak
artifacts are observed from the reconstructions corresponding
to the 818-DL/188-DL methods (such as the 818-DL/188-
DL zoomed-in ROIs in Fig. (4)), while the structures are
distorted for the processed view (as indicated by the arrow
in the 881-DL zoomed-in ROI of Fig. (4)). One also could
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Fig. 2. Transversal views of the HN patient images reconstructed by different methods. From left to right in the first row, the images are regular dose FDK
reconstruction, reconstructions from the 3D-DL, 2D-DL and TF methods, respectively. From left to right in the second row, the images are reconstructed by
the FDK, 881-DL, 818-DL and 188-DL methods, respectively. The last two rows show the corresponding zoomed-in ROIs of the red box in the first two
rows. The display window is [-750 750] HU.

TABLE I
THE RMSE (UNIT: HU) AND SSIM VALUES OF DIFFERENT METHODS FOR THE HN PATIENT CASE.

Methods 3D-DL 2D-DL TF 881-DL 818-DL 188-DL Low Dose Regular Dose
RMSE 71.97 74.78 82.68 79.29 78.99 76.61 193.61 0
SSIM 0.8756 0.8709 0.8587 0.8628 0.8621 0.8656 0.6308 1

TABLE II
THE RMSE (UNIT: HU) AND SSIM VALUES OF DIFFERENT METHODS FOR THE PROSTATE PATIENT CASE.

Methods 3D-DL 2D-DL TF 881-DL 818-DL 188-DL Low Dose Regular Dose
RMSE 22.57 25.54 23.46 27.35 25.68 25.09 68.78 0
SSIM 0.9840 0.9814 0.9808 0.9798 0.9790 0.9795 0.8378 1

TABLE III
VARIANCES OF THE DISTRIBUTIONS AMONG DIFFERENT DICTIONARIES

AND DIFFERENT CASES.

3D-444 2D-881 2D-818 2D-188
HN 0.0005 0.1643 0.1674 0.1611

Prostate 0.0002 0.1541 0.1524 0.1469

find that the 881-DL result is less sharp compared to the 3D-
DL result. The calculated RMSE/SSIM values are in Table II.
As expected, the 3D-DL method quantitatively outperforms
the other competitors in terms of the lowest RMSE and the
highest SSIM measures, which are consistent with the visual
observations that the 3D-DL method leads to more naturally
and visually pleasant denoising results by better preserving the
image texture areas.

Figure (5) plots the distributions of the representation co-
efficients among different dictionaries. Note that the y-axis is
set to be the logarithmic probabilities to show the Laplacian
nature of these probability distributions more clearly[28].

It is obvious that for both cases, the 3D dictionary based
sparse coefficients consistently have much narrower Laplacian
distributions compared to the 2D dictionary based sparse
coefficients, suggesting the higher representation efficiencies
of the 3D dictionary. The variances of these distributions
are summarized in Table III. It is shown that the variances
associated with the 3D dictionary are much smaller compared
to those with respect to the 2D dictionaries.

Table IV lists the time overheads of the fidelity term update
and the regularization term update for all the methods consid-
ered in this work. The time overhead of the fidelity term update
is the total time required by all the subsets. It is observed that
the time consumption for the fidelity term update is quite stable
among different methods, however, for the regularization term
update, the time consumption is highly correlated with the
choice of the regularizer. It is shown that similar computational
cost is required for the 3D-DL method and the 881-DL/818-
DL/188-DL methods, while the 2D-DL method suffers from
significantly higher computational cost. It also can be seen
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Fig. 3. Transversal views of the prostate patient images reconstructed by different methods. From top to down in the first column, the images are regular
dose FDK reconstruction, reconstructions from the 3D-DL, 2D-DL and TF methods, respectively. From top to down in the second column, the images are
reconstructed by the FDK, 881-DL, 818-DL and 188-DL methods, respectively. The display window is [-300 150] HU.

TABLE IV
TIME OVERHEADS OF DIFFERENT METHODS FOR THE HN AND PROSTATE PATIENT CASES (UNIT: SECONDS)

cases 3D-DL 2D-DL TF 881-DL 818-DL 188-DL
HN fidelity term 13.04 13.99 13.02 13.91 13.02 13.17
HN regularization term 20.49 61.62 5.46 21.29 20.86 20.81

Prostate fidelity term 9.33 9.76 9.28 9.53 9.52 9.9
Prostate regularization term 14.93 50.16 2.25 20.6 16.84 17.94

from Table IV that one of the biggest advantages of the TF
method is its low computation complexity.

Figure 6 plots the convergence curves for the HN and
prostate patient cases. It can be seen that 10 iterations are
sufficient for the whole program to converge in both cases.

IV. DISCUSSIONS AND CONCLUSIONS

In this study, a 3D dictionary learning based CBCT recon-
struction algorithm has been proposed for low-dose CBCT,
being validated in multiple realistic data experiments. The
comparison has indicated that the 3D-DL method can deliver
superior image quality in terms of well-preserved structures
and effectively-suppressed noise. If the 2D dictionary learning
based sparse constraint was enforced on all the three views
consecutively, i.e., the 2D-DL method, the reconstructed im-
ages appeared blurry while there was still remaining noise.
If the 2D dictionary learning based sparse constraint was

enforced on a single view, such as with the 881-DL/818-
DL/188-DL methods, directional streak artifacts were induced
into the unprocessed views, while the structures on the pro-
cessed view could be distorted. The TF method would result in
noisy high contrast regions. To understand and optimize the
performance of the 3D-DL method, a statistical analysis on
the representation efficiencies of the 2D/3D dictionary were
carried out, suggesting the higher representation efficiency of
the 3D dictionary. Moreover, the whole program was well
parallelized by employing several algorithmic tricks, attaining
a high computational efficiency.

The cause of the directional streak artifacts is that the
noise in the processed view is smoothened out when the
2D dictionary based processing is applied on only one view.
As a result, the intersections of the unprocessed views with
the processed view would exhibit directional streak artifacts,
such as the horizontal/vertical streak artifacts in the transversal
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Fig. 4. The zoomed-in ROIs of the red box with respect to different reconstructions in Fig. (3). From left to right in the first row, the images are regular dose
FDK reconstruction, reconstructions from the 3D-DL, 2D-DL and TF methods, respectively. From left to right in the second row, the images are reconstructed
by the FDK, 881-DL, 818-DL and 188-DL methods, respectively. The display window is [-300 150] HU.

Fig. 5. Distributions of the representation coefficients among different dictionaries for the HN patient (a) and prostate patient (b). The x-axis is the values
of the coefficients, the y-axis is the logarithmic probabilities. 3D-444 denotes the distributions of the coefficients for the 3D data samples represented by the
3D dictionary of dimension 4 × 4 × 4. 2D-881/2D-818/2D-188 denote the distributions of the coefficients with the 2D dictionary for the 2D data samples
extracted from the transversal/coronal/sagittal views, respectively.

Fig. 6. The convergence curves of the 3D-DL method corresponding to the HN (a) and prostate (b) patient cases, respectively. The x-axis is the iteration
number, the y-axis is the change amount of the images between consecutive iterations.

views if the coronal/ sagittal views are processed, as illustrated
by the 818-DL/188-DL sub-figures in Fig. (2). The reason of
the distorted structures in the processed view may be explained
by the fact that the directional streak artifacts are spread
out through the cone beam forward projection. If the sparse
constraint are applied on all the three views successively,
i.e., the 2D-DL method, the directional streak artifacts could
be alleviated. However, the 2D-DL method may incorrectly
interpret the directional streak artifacts from the previous
steps as the potential structures. To avoid this side effect, a
large tolerance is required, however, it would result in blurred
structures as demonstrated in Sec. (III). Moreover, one may
need to carefully select the suitable tolerance for each of the
three steps in the 2D-DL method; in this work, the tolerances

were set to be the same for all the three steps. Another
disadvantage of the 2D-DL method is the high computational
cost, as indicated by Table IV. The TF method employs a
group of piecewise linear TF basis functions consisting of
low pass filters for low frequency components, as well band
pass and high pass filters for edges. As a consequence, in
processing high contrast regions, the high pass filters are
required to represent the structures, and may result in the
noise-like artifacts.

The higher representation efficiency of the 3D dictionary
over the 2D dictionary may be explained by the fact that the 3D
dictionary could sufficiently capture spatial correlations in all
the three dimensions simultaneously, while the 2D dictionary
could only make use of the planar spatial correlations. As
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mentioned in Sec. (II-D3), a more efficient representation
could facilitate the later processing stages. Indeed, this has
been experimentally validated in our comparison studies as
described in Sec. (III).

In this work, the volume dimensions of the HN and prostate
patient cases are 512 × 512 × 512 and 512 × 512 × 256,
the corresponding projection datasets are 512 × 384 × 363
and 512 × 384 × 656, respectively. As shown in Table IV,
with the 3D-DL method, the time consumption per iteration
in both cases is 30s, as illustrated in Fig. (6), the whole
program would converge in 10 loops. Therefore, without loss
of generality, a high-quality CBCT image is expected within
5 minutes from comparable amounts of data with similar
computing devices (e.g., NVIDIA GeForce GTX 980 video
card) relative to those used in this work.

In summary, a 3D-DL based sparse constraint has been
incorporated into the iterative reconstruction framework to
facilitate the low-dose CBCT. The 3D dictionary has exhibited
a higher representation efficiency over the 2D dictionary,
demonstrating a potential of enhancing the image quality.
To offer the clinical utility, our whole program has been
implemented on GPU with several algorithmic tricks.
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