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Abstract—X-ray computed tomography reconstruction has
evolved over 40 years for medical, security, and industrial
applications. Compared to traditional analytic reconstruction
techniques such as filtered back projection (FBP), statistical
reconstruction algorithms like alternating minimization (AM)
provide improved image quality and can incorporate prior
information. Increasing patient safety through reduced radiation
dose results in fewer measured photons. Penalized AM is a
powerful tool for maintaining image quality with less data, but
the weight of penalty must be chosen carefully. If the penalty
weight is too low, noise may not be suppressed and artifacts
may be exhibited, such as those due to sharp discontinuities in
attenuation at edges of dense material. If the penalty weight is
higher, noise and artifacts may be reduced, but at the expense
of introducing bias into the reconstruction. These contradicting
requirements for the weight of the penalty limit our ability to
improve reconstructed image quality in a low dose scenario. In
this paper, we develop a new algorithm called wavelet regularized
alternating minimization (wav-AM) by introducing a second
penalty term on wavelet coefficients. By solving this dual domain
optimization problem, we are able to perform 3D reconstruction
of scanned baggage with low X-ray photon intensity. A medical
imaging application of the wav-AM algorithm will be provided
to illustrate the performance in image quality improvement.
Evaluation of these real data reconstructions show reduced
noise and artifacts without biasing the estimated attenuation of
objects of known attenuation. The wav-AM algorithm features
guaranteed convergence and increases the computational burden
compared to the usual penalized AM algorithm only negligibly,
even though we are solving a dual domain optimization problem.

Index Terms—Computed Tomography, Low Dose, Wavelet,
Alternating Minimization, Dual Domain Optimization

I. SUMMARY

X-ray CT image reconstruction is often viewed as a regular-
ized optimization problem in which we try to minimize a cost
function with two terms. The first term is a data fitting term,
such as squared error, weighted lease-squares error [1], or I-
divergence [2]. The second term is a penalty that contains prior
information about the image, and usually promotes smoothness
in the reconstructed image. Typical choices of penalty terms
are total variation or a Huber-type penalty [3][4]. The balance
between the data fitting term and the penalty term is controlled
by the choice of the penalty weight. A low weight for the
penalty retains details in the image but does not suppress
noise or artifacts. A higher penalty weight reduces noise and
artifacts, but the trade-off is possible loss of detail due to a less
accurate fitting of the forward projected image to the measured
data. So, in low dose CT, choosing a good penalty weight is not

only crucial but also difficult. The contradicting requirements
favoring a low weight to optimize some image characteristics
and a high weight to optimize other image characteristics make
if difficult to find an optimal penalty weight. To solve this
problem, we introduce a new iterative algorithm called wavelet
regularized alternating minimization (wav-AM), which has the
following properties:
• In addition to the usual neighborhood smoothness penalty,

an extra penalty term is introduced on wavelet coefficients
of the reconstructed image.

• Instead of optimizing this augmented cost function in the
image domain alone, we view it as a dual optimization
problem on the image domain and the wavelet coefficient
domain.

• By solving this dual domain optimization problem, we
are able to reduce artifacts and still retain an unbiased
reconstruction.

• The wav-AM algorithm retains the convergence proper-
ties of the usual penalized AM algorithm.

• Compared with the usual penalized AM algorithm, the
introduction of the wavelet penalty does not increase
the computational cost significantly. Furthermore, other
acceleration methods can be applied.

II. INTRODUCTION

The AM algorithm is one of the most efficient X-ray CT
reconstruction methods [2]. The data fitting term in (1) is I-
divergence between data y and the estimated mean q. In [2] it
is shown that minimizing I-divergence is equivalent to max-
imizing Poisson log-likelihood. We formulate our estimation
problem as

u = arg min
u

∑
i

I(yi||qi(u))

= arg min
u

∑
i

[yi log
yi

qi(u)
− yi + qi(u)], (1)

where qi(u) = Ii exp[−
∑
j hijuj ], u ∈ RN+ is the image we

want to reconstruct, Ii is the mean air scan photon counts at
source-detector pair i, and hij is an element in the system
matrix that represents the contribution of voxel j to source-
detector pair i.

If we add a penalty term to (1), the resulting penalized
maximum-likelihood estimate is

min
u
F (u) =

∑
i

I(yi||qi(u)) + λR(u), (2)

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

726

June 2017, Xi'an

DOI: 10.12059/Fully3D.2017-11-3201030



2

where R(u) is a penalty term used to enforce smoothness
on the image. Here we choose a Huber-type edge preserving
penalty which has the following form [3][5]

R(u) =
∑
j

∑
k∈Nj

wjkφ(uj − uk), (3)

where

φ(uj − uk) =
1

δ2
(|δ(uj − uk)| − log(1 + |δ(uj − uk)|)). (4)

When uj − uk is small, φ performs like a quadratic function,
when uj − uk is large, φ performs like a linear function and
in this way we achieve the edge preserving effect. Another
advantage of this choice is that we have continuous first order
and second order derivatives at the point 0. Parameter δ is
set to be 1000 in this paper, Nj is the set of neighboring
voxels around voxel j. The weights wjk control the relative
contribution of every neighboring voxel to voxel j. Here, we
choose a 26-voxel neighborhood and their weights are taken
as the normalized inverse distance to voxel j.

Due to the existence of the penalty term, we do not have
a closed form solution to problem (2). Instead, we decouple
the cost function [2] with respect to every element uj and
then use Newton’s method which requires the first order and
second order derivative of the cost function. The corresponding
derivatives are
∂F (uj)

∂uj
=

∑
i

hijyi−βj exp{−Z(uj−unj )}+
∂R(uj)

∂uj
(5)

and
∂2F (uj)

∂u2j
= βjZ exp{−Z(uj − unj )}+

∂2R(uj)

∂uj
2 , (6)

where βj =
∑
i hijqi(u), unj is the current estimate and Z is

a constant to enforce convergence.
Then we follow the standard Newton’s method to update

every image voxel by

un+1
j = unj − [

∂F (uj)

∂uj
]/[
∂2F (uj)

∂u2j
], (7)

where unj is the reconstructed voxel j at iteration n.
The data package used in this paper was acquired from

a SureScanTM x1000 Explosive Detection System which
scanned a NIST A phantom [6]. As shown in Fig.1, the
object of interest is a Delrin cylinder wrapped with aluminum,
copper, tin and lead. In Fig. 2, we plot the histogram of
numbers of source-detector pairs for different photon counts.
From it we can see that the maximum photon counts at a single
pair is less than 2000, and a large portion of pairs have very
limited photon counts. The data is photon starved and we use
the AM algorithm to deal with this low dose problem.

Reconstruction results from the AM algorithm are shown
in Fig. 3, Fig. 4, Fig. 5 and Fig. 6. In Fig. 3, we show the
lateral slice 200 reconstruction which shows the geometry of
the NIST A phantom. Fig. 3(a), (b), (c) and (d) correspond
to results from unpenalized AM algorithm, penalized AM
algorithm with λ = 1000, λ = 3000 and λ = 15000. We can
identify the bright metal wraps on the edges and the noise level
is reduced if we increase the penalty weight λ. In Fig. 4, the

Fig. 1: Geometry of NIST A phantom.

Fig. 2: Histogram of photon counts.

left column shows the reconstructed lateral slice No. 99. In this
slice, the object of interest is a Delrin cylinder wrapped with
aluminum. From top to bottom, the images are reconstructed
with unpenalized AM, penalized AM with λ = 1000, 3000,
and 15000. The right column shows the corresponding profiles
of row 186 in slice No. 99 which are highlighted in the left
column. In unpenalized AM we get very noisy results and with
the increase in penalty weight λ, the noise is reduced and we
have smooth images. However, the peak value is dramatically
decreased and the value in the center is increased with heavier
penalty weights. This direct comparison is shown in Fig. 5.
We conclude that a heavy penalty will generate biased results.

In Fig. 6, we use another slice to show the performance of
the AM algorithm. Fig. 6 shows reconstructed image slice No.
92 with unpenalized AM, penalized AM with λ=1000, 3000
and 15000. Slice 92 is on the edge of aluminum wrapped
around the Delrin cylinder, and the disk in the figure is pure
Delrin. We can see that without a penalty term, as in Fig.
4(a), the image has many streaks coming out tangent to the
boundary of the Delrin cylinder and dotted noise is visible
across the entire area. When we apply the penalized AM
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(a)

(b)

(c)

(d)

Fig. 3: Sagittal slice No. 200 with (a) unpenalized AM, (b)
penalized AM λ = 1000, (c) penalized AM λ = 3000, and (d)
penalized AM λ = 15000. The display window is [0 1]mm-1.

algorithm, if the weight is low like λ = 1000 or λ = 3000,
we still have severe artifacts and noise. We must increase the
weight to 15000 to finally suppress these artifacts and noise.

From the results of slices No. 99 and No. 92, we have
contradictory requirements in the choice of penalty weights.
Low weights are not able to reduce artifacts and noise, and
the high weights will generate biased reconstruction.

Fig. 5: Profile comparison for different penalty weight λ.

(a) (b)

(c) (d)

Fig. 6: Reconstructed slice No. 92 (a) unpenalized AM, (b)
penalized AM, λ = 1000, (c) penalized AM, λ = 3000, (d)
penalized AM, λ = 15000. The display window has been
tightened to [0 0.15] mm-1 to deliberately emphasize streaks
associated with measurements tangential to circular object.

III. METHOD

To deal with the contradiction we stated in the last section,
we add an extra penalty term in the wavelet coefficient domain
and our problem is reformulated as

min
u
F (u) =

∑
i

I(yi||qi(u)) + λR(u) + γQ(u), (8)

where Q(x) = ||Φx||1 [7], and Φ is an orthogonal wavelet
transform operator which transforms image u into its cor-
responding wavelet ũ ∈ RN . Due to the existence of Φ,
which leads to dramatic increase in computational cost in
Newton’s method, it is hard to solve this problem directly
on image domain. Here, we use Sparse Reconstruction by
Separable Approximation algorithm (SpaRSA) [8]. Since in
(8), I(yi||qi(u)) and R(u) are both convex in u, we can cast
the problem in the following form

min
u
F (u) = g(u) + γQ(u), (9)

where g(u) =
∑
i I(yi||qi(u)) + λR(u). Then we generate a

sequence of iterates {un, n = 0, 1, ...} and tailor our problem
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4: Lateral slice No. 99 and profile of row 186. (a)(b) unpenalized AM, (c)(d) penalized AM with λ = 1000, (e)(f) penalized
AM with λ = 3000, (g)(h) penalized AM with λ = 15000. The display window is [0 0.8] mm-1.

in which the following sub-problem can be solved efficiently
at each iteration

un+1 = arg min
z

(z − un)
∂g(un)

∂u
+
αn
2
||z − un||22 + γQ(z).

(10)
for some αn ∈ R+. An equivalent form of sub-problem (10)
is

un+1 = arg min
z

1

2
||z − ûn+1||22 +

γ

αn
Q(z), (11)

where
ûn+1 = un − 1

αn

∂g(un)

∂u
. (12)

αn is taken as the second order derivative of g(un) which is
given in (6) and ∂g(un)

∂u is exactly function (5). Then we have
the following problem,

un+1 = arg min
z

1

2
||z − ûn+1||22 +

γ

αn
||Φz||1, (13)

where ûn+1 = un − [∂g(u
n)

∂u ]/[∂
2g(un)
∂u2 ] is the Newton’s

iteration for problem (2).
Since Φ is an orthogonal wavelet transform operator, (11)
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is equivalent to the following minimization problem

un+1 = arg min
z

1

2
||Φz − Φûn+1||22 +

γ

αn
||Φz||1 (14)

or
ũn+1 = arg min

z̃

1

2
||z̃ − ˜̂un+1||22 +

γ

αn
||z̃||1, (15)

where z̃, ˜̂u represent the wavelet coefficients of z and û, re-
spectively. It has been demonstrated that the iterative shrinkage
thresholding algorithm (ISTA) [9] solves this problem by

ũn+1 = (|˜̂un+1| − γ

αn
)+ sgn(˜̂un+1). (16)

In this way, we solve problem (8) in a two-step update
scheme: first solve a traditional penalized AM problem in the
image domain, and then in the wavelet domain update the
corresponding wavelet coefficients based on (16).

The pseudo-code for wav-AM is shown below.

Algorithm 1 wavelet regularized alternating minimization

Initialize u
for n = 1 to N do

A. Solve traditional penalized AM by Newton’s method
1. Set m = 0, and u(m=0)

j Newton = u
(n)
j ;

2. u(m+1)
j Newton = u

(m)
j Newton − [∂g(u

n)
∂u ]/[∂

2g(un)
∂u2 ]

3. Iterate until convergence, ˜̂un+1
j = Φu

(m+1)
j Newton

B. Update ũj by (16)
1. ũn+1 = (|˜̂un+1| − γ

αn
)+ sgn(˜̂un+1)

2. un+1 = Φ−1ũn+1

end for

IV. EXPERIMENT RESULTS

A. NIST A Phantom

We use the same sample bag data to illustrate the perfor-
mance of wav-AM. The orthogonal wavelet is chosen to be
a Daubechies D4 wavelet. The parameters λ and γ are both
equal to 1000. In Fig. 7(a), the lateral slice No. 99 is shown.
In Fig. 7(b), the profile of the AM algorithm with different
penalty weights λ and the wav-AM algorithm is shown, the
wav-AM will generate unbiased results compared with high
penalty weights and produce smoother image compared with
small penalty weights. In Fig. 7(c), the peak values profiles
are shown. We find that adding an extra wavelet penalty does
not shift the peak values and they align well with the results
from the AM algorithm with λ = 1000. In Fig. 7(d), we
plot the profile of the cross section of Delrin. Compared with
results from the AM algorithm with λ = 1000, the wav-AM
reconstruction has a even smoother Delrin reconstruction and
retain the sharp edge from air to aluminum and from aluminum
to Delrin.

In Fig. 8, the reconstructed slice No. 92 from wav-AM is
shown. Compared with the traditional AM algorithm, the wav-
AM algorithm is able to dramatically reduce the streak artifacts
and dotted noise with relatively low λ. We avoid using a huge
weight like λ = 15000 and our reconstruction is unbiased,
smooth and also artifact-reduced.

(a) (b)

(c) (d)

Fig. 8: Slice No. 92 (a) wav-AM with λ = 1000, γ = 1000,
(b) unpenalized AM, (c) penalized AM with λ = 1000, (d)
penalized AM with λ = 15000. The display window has been
tightened to [0 0.15] mm-1 to deliberately emphasize streaks.

Since we avoid computing the wavelet transform operator
Φ directly in the Newton’s step, compared with the traditional
AM algorithm, the extra computational cost in wav-AM is
due to the wavelet thresholding step, and this step is very fast
in the Matlab environment. The total increase in computation
time is less than 5%.

B. Patient Data

The patient data was collected from Philips Brilliance Big
Bore scanner with 816 detectors per detector row, 1320 source
positions per rotation and collimation 16 by 1.5mm. The data
has two energy measurements: 90kVp (375mAs) and 140kVp
(295mAs). In this section, we select 140kVp measurement as
our data input. The image size is 610 × 610 with pixel size
1mm × 1mm.

In Fig. 9(a), we use the standard FBP method to reconstruct
the image and from it we can see a lot of noise and streaks
across the body. In Fig. 9(b), we use the penalized AM
algorithm with λ = 106. The noise is reduced and we can
see clear anatomical structure inside the body, however the
streaking artifacts are still prominent. In Fig. 9(c), we increase
the penalty weight λ to 5×106, and the streaks inside the body
are suppressed, however the streaks on the left and right edges
are still prominent. Another problem is that λ = 5×106 is too
large and we have oversmoothed images. In Fig. 9(d), we use
the wav-AM algorithm with λ = 106 and γ = 2 × 105. We
reduce the noise and streaking artifacts simultaneously without
sacrificing the resolution. In this experiment, the parameter δ
is set to be 5000 in both the penalized AM algorithm and the
wav-AM algorithm.

V. CONCLUSIONS

An iterative algorithm for low dose X-ray CT image re-
construction is formulated and presented by the wav-AM
framework. The algorithm is able to suppress artifacts and
heavy noise brought by low penalty weights and unbiased
reconstruction generated with high penalty weights in the
traditional penalized AM framework. Our two-step update
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(a) (b)

(c) (d)

Fig. 7: (a) is slice No. 99 and (b) is the profile comparison of column 86. The display window is [0 0.8] mm-1. (c) and (d)
are detailed profiles of aluminum and Delrin, respectively.

(a) (b)

(c) (d)

Fig. 9: Patient data reconstructions: (a) the standard FBP method, (b) the penalized AM algorithm with λ = 106, (c) the
penalized AM algorithm with λ = 5×106, and (d) the wav-AM algorithm with λ = 106 and γ = 2×105. The display window
is [0.016, 0.024]mm-1.
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scheme provides an efficient dual domain method to solve
this dual penalty problem without sacrificing speed and do not
require extra computation resource. The extra penalty gives us
another level of flexibility to improve image quality which is
promising for further research. And in terms of application,
acceleration methods used with the AM algorithm like ordered
subsets [10] can be applied directly.
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