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Abstract— Multi-slice helical Computed Tomography (HCT) 

has been widely applied in clinical applications. Due to the 

potential radiation risk, it has attracted an increasing attention to 

reduce radiation dose while maintaining the diagnostic 

performance. Inspired by the longitudinal sampling 

inconsistencies of  helical CT scanning, in this paper, we develop 

a statistical iterative reconstruction algorithm based on three-

dimensional dictionary learning to improve image quality for 

low-dose HCT. The longitudinal Total Variation (TV) is added to 

change the image noise distribution. The classical distance-driven 

projection and back-projection models are employed to avoid 

artifact-inducing. To enhance the computational performance, 

Graphics Processing Unit (GPU) implementation, Order Subset 

technology and Nesterov’s acceleration strategy are employed in 

our iterative reconstruction codes to accelerate the optimization. 

The Contrast Noise Ratio (CNR) index of reconstructed images 

and the subjective evaluation of medical practitioners all verify 

the superiority of our proposed algorithm. 

Keywords—low dose HCT; longitudinal constraint; dictionary 

learning; distance driven; GPU implementation 

I. INTRODUCTION

Multi-slice helical Computed Tomography (HCT) has 

been widely used in clinical applications. With the increasing 

of helical CT scans, its potential radiation risk attracts 

increasingly public concerns. How to reduce radiation dose 

while maintaining the diagnostic performance is a hot topic in 

current CT field. Decreasing the X-ray flux towards each 

detector, which is usually implemented by adjusting the 

operating current of the X-ray tube, results in a reduced 

radiation dose. Analytic reconstruction algorithms such as 

filtered backprojection (FBP) have been extensively used for 

HCT image reconstruction because of their computational 

efficiency. These algorithms generally consider the cone-beam 

geometry by calculating equivalent image planes to minimize 

the error between the reconstruction plane and the projection 

ray paths in 2D back-projection step, such as ASSR [1], 

AMPR [2] or wFBP [3]. However, the reconstructed images  
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suffers from noise and streaking artifacts which severely 

degrade image quality. While the performance of analytic 

reconstruction algorithms is insufficient for low-dose 

conditions, iterative techniques have a great potential to 

reconstruct better image quality with substantially reduced 

artifacts aided by certain prior information with the increased 

computational cost.  

Considering the properties of received photon numbers on 

each detector cell in low dose cases, statistical iterative 

reconstruction (SIR) [4] optimizes the maximum-likelihood or 

penalized-likelihood function formulated according to the 

statistical characteristics of projection data, which promises 

high reconstruction quality from noisy projection data. 

Meanwhile, the addition of a stabilizing function in terms of a 

regularizer may further reduce noise and artifacts. It is very 

easy to incorporate some kinds of prior information of target 

images into the regularizer. This provides another tool to 

control image quality. Till now, many types of prior 

information have been proposed, including total variation (TV) 

[5], dictionary learning (DL) [6], and so on. 

Considering the longitudinal sampling inconsistencies of 

helical scanning, in this paper, we develop a statistical 

reconstruction algorithm based on three-dimensional 

dictionary learning. The goal is to improve image quality of 

low-dose HCT by adding the longitudinal TV to change the 

noise distribution of the images. Our method consists of two 

components. The first component is the SIR routine that 

enforces the statistical knowledge of the projections. The 

second component is the dictionary penalty with the 

longitudinal TV as a prior information of the image space 

distribution. Furthermore, because the reconstruction accuracy 

is affected by mathematical affinity and similarity between the 

actual implementation of the forward and back-projection, the 

classical distance-driven model [7], which matched between 

the actual implementation of the forward projector and back-

projector, is used to improve the performance of the entire 

iterative procedure. In the optimization procedure, we use a 

separable quadratic surrogate algorithm for Poisson 

loglikelihood function and Newton’s gradient method for 

image update. Furthermore, the order subsets and the 

Nesterov’s acceleration strategy [8] are used to accelerate the 

optimization. Besides, the proposed method is implemented in 

a Graphics Processing Unit (GPU) for efficient computing. 

The dataset supported by Low Dose CT Grand Challenge was 

employed to validate our proposed algorithm. 

The rest of this paper is organized as follows. In the 

second section, the algorithm details are described. In the third 

section, the results are presented. Finally, some related issues 

are discussed and the conclusion is drawn. 
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II. METHODS 

A. Statistical model 

For HCT reconstruction, while the traditional methods of 

interpolating helical data to an equivalent plane can lead to 

inherently inaccuracies, the direct reconstruction methods 

based on a statistical model can explicitly describe practical 

applications more accurate. Let 
1( , , )T J

J      be the 

discrete vector of linear attenuation coefficient. The SIR is 

equivalent to minimize the following objective function: 
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  denotes line integrals through the 

imaging object, { }ijA a  is the system matrix, I  and J  are 

respectively the numbers of projections and voxels, ˆ
ip  

represents an estimated line integral, iw  is the statistical 

weight for each x-ray path which reflects the inherent 

variations in credibility of data, and ( )R   denotes a 

regularization term. 

B. Distance driven forward and back-projection 

The performance of an iterative CT reconstruction 

algorithm is strongly determined by the features of forward 

and back-projection models. Because the forward and back-

projection are unified in the distance-driven model, it can 

avoid artifact-inducing approximations characteristic of some 

other methods. Therefore, we employ this distance-driven 

model to maximize SIR performance. The distance-driven 

approach in Fig.1 projects the horizontal and vertical 

boundaries (black dots) of image voxel and the detector cell 

boundaries (white dots) onto a common axis. The black 

squares are projected voxel boundaries, and the white squares 

are projected detector cells boundaries. The overlap (we 

calculate the lengths of overlap along the x (or y) direction and   

the z direction and then multiply them to get the area of 

overlap) between the interval defined by the projected 

boundaries of an image voxel and the one defined by the 

projected boundaries of a detector cell weights the 

contribution of the selected image voxel to the selected 

detector cell (and vice versa). The total contribution of voxel 

 Fig. 1: Schematic representation of the distance-driven 

approach for forward projection (and back-projection) with 

cylindrical detectors. 

V with attenuation 
V  to the line integral 

Dp for detector D is 

given by the following updating equation: 
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where t  is the isotropic voxel size,   and   are the in- and 

out-of-plane angles of the line of interest with the y-axis, 
1o  is 

the length of overlap and 
1d  is the detector width in-plane, 

2o  

is the length of overlap and 
2d  is the detector width out-of-

plane. 

C. Object function 

The regularization term  R   in Eq.(1) represents prior 

information of the reconstructed image. It has been validated 

that the dictionary learning and sparse representation 

techniques are able to preserve fine structures and remove 

noise for low dose CT. With a predetermined dictionary D , 

the sparse representation can be obtained by solving the 

following minimization problem: 
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where sE  denotes the extraction operator for the 
ths  data 

block which could be sparsely represented with a learned 

dictionary D  and the associated coefficient are s ,   is the 

Lagrange multiplier, and 
0s  denotes the 0l  norm of the 

representation coefficients s  which directly counts the 

number of the non-zero elements.  In this work, the orthogonal 

matching pursuit (OMP) algorithm is used to find the sparse 

representation of each patch. 

Taking into account the longitudinal sampling 

characteristics of helical scan mode, longitudinal TV 

constraints are employed. The longitudinal TV can be 

expressed as 2

, , , , 1, ,
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TV       where  , ,x y z  

represents the pixel index of the 3D image.  

The image reconstruction process is equivalent to solve the 

following optimization problem:      
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In this paper, the order subsets and the Nesterov’s acceleration 

strategy are used to accelerate the optimization of iterative 

reconstruction. The number of subset is 16 and the total 

number of iterations is 5. Particularly, Eq. (4) can be 

iteratively optimized with a separable quadratic surrogate 

method. 

D. GPU implementation 

We implement the proposed algorithm on GPU to enhance 

its computational performance. To efficiently use memory and 

thread in a GPU kernel, four main functions are parallelized 

independently: 1) OMP algorithm 2) longitudinal TV 3) 
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forward projection and 4) back-projection. Nividia’s Titan 

GPU and CUDA are used with Matlab. Main functions are 

implemented in Mex function of Matlab with CUDA.  

III. RESULTS

A. The datasets

The datasets generated by Low Dose CT Grand Challenge

[9] are employed to validate our proposed algorithm. For the

given 10 training datasets, projection data from z-flying focal

spot technology [10] and FBP reconstructed images at both

full and quarter dose are given. Hence, the images

reconstructed by FBP at full dose are used as ground-truths.

The lesion locations and type information are also given in the

full-dose reconstructed images.

 In this paper, the patient L067 is selected from the 

training datasets to demonstrate the merits of the proposed 

algorithm. The field of view of the reconstructed images is 

34cm in diameter. In the patient L067, five different sizes and 

types of lesions are included. The locations of the lesions are 

indicated by red arrows in Fig. 2.  

B. Image quality

Among the five lesions in Fig. 2, the third lesion is selected 

for visual inspection.  Fig. 3 gives the reconstructed images by 

different methods. (a) is reconstructed by FBP at full dose 

(FD-FBP) to serve as ground truth; (b) is reconstructed by 

FBP at quarter dose (QD-FBP); and (c) is reconstructed by the 

TV-based SIR at quarter dose (QD-TVSIR); (d) is 

reconstruted by the DL-based SIR at quarter dose image (QD-

DLSIR); and (e) is reconstructed by our proposed method at 

quarter dose.  

Fig. 2. Reconstructed images of patient L067 at full-dose 

using FBP. The lesions  are indicated by red arrows. Among 

them, ⅰ is post op/post RFA (Radiofrequency Ablation) 

defect; ⅱ and ⅴindicate hemangioma; ⅲ and ⅳ indicate 

benign cyst. The display window is [-125 225] HU.  

In Fig. 3(b), the imaging quality is severely degraded by 

noise and artifacts. Some details and important structures, 

such as the lesion and some blood vessels, cannot be 

discriminated. However, all of the iterative reconstruction 

methods can suppress the noise and artifacts in different 

degrees at quarter dose. Due to the piecewise constant 

assumption of TV,  the lesion and some tiny blood vessels in 

Fig. 3(c) are obscure or invisible. In comparison, the DL-

based SIR method could preserve the image detail and 

suppress noise. The lesion and blood vessels are easily 

discriminated in Fig. 3(d). By the effect of helical scanning, it 

makes the noise distribution inconsistent between transverse 

and longitudinal planes by simply using three dimensions 

dictionary constraints. This affects the image quality. In Fig. 

3(e), the proposed method has a better performance both at 

suppressing noise and preserving image details. 

To quantitatively evaluate the proposed method, in the 

same lesion, the same region of interest (ROI) is placed on 

lesion location as a low-constrast object and the adjacent liver 

as background (avoiding vessels). The CNR index are 

measured for all the iterative  reconstructed images, which 

could be calculated as s bCNR=2 - / ( ),s b    where 
s

and 
b are the mean values in the signal and background, and

s and 
b  are the deviations of singla and background. The 

quantitative results of CNR are  listed in Table Ⅰ. One can 

see that the proposed method achieves the best performance, 

which is coherent to the visual effects. 

For subjective evaluation, the reconstructed images are 

evaluated by five readers with three years of experience. They 

are given a ROI showing the location of lesion. Each reader is 

asked to determine whether the lesion is present or absent, 

according to the following scoring system: 2 denotes very well 

identified, 1 denotes almost identified, 0 denotes possibly 

identified, -1 denotes probably identified, and -2 denotes not 

identified. The median score of five readers are summarized in 

Table Ⅱ. The proposed method also has a better performance 

at the detection of tiny lesions. 

C. Computational cost

Our codes are run on an Nvidia’s TitanX GPU and CUDA

with Matlab. To focus on algorithm evaluation, we ignore the 

z-flying focal spot effect and use half of the projection from a

determined focal spot. Meanwhile, only one GPU is utilized to

run the code. Our codes are not optimized for better speed. To

obtain a 512*512*288 image from 736*64 bins by 1152 views

raw data, the computational costs of forward projection, back-

projection, OMP algorithm and longitudinal TV algorithm are

65s, 77s, 133s and 2s, respectively, This is significantly faster

than a CPU-based implementation. Using the order subsets

and the Nesterov’s acceleration strategy, the algorithm can

converge after 5 iterations. Finally, we average the

reconstructed images from different focal spot to make the

final image.
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Fig. 3. Reconstructed 3D images of patient L067 at the 

third lesion by different methods. From left to right, the 

images are the transverse plane, the coronal plane and the 

sagittal plane, respectively. From (a) to (e), the images are 

reconstructed by the FD-FBP, QD-FBP, QD-TVSIR, QD-

DLSIR and the proposed method, respectively. The display 

window is [-125 225] HU. The lesions are indicated by red 

arrows. 

 

Table Ⅰ. The CNR of Different Lesions with Different 

Reconstructed Method. 

Reconstruction method Lesions 

ⅰ ⅱ ⅲ ⅳ ⅴ 

QD-TVSIR 0.43 0.34 0.34 0.61 0.24 

QD-DLSIR 0.78 0.61 0.31 0.89 0.26 

Proposed Method 0.82 0.68 0.46 0.92 0.42 

 

Table Ⅱ. Median Scores of Five Readers Evaluating Different 

Lesions with Different Reconstruction Method. 

Reconstruction method Lesions 

ⅰ ⅱ ⅲ ⅳ ⅴ 

QD-TVSIR -2 2 -1 -2 0 

QD-DLSIR -1 2 0 0 1 

Proposed Method -1 2 1 1 1 

 

IV. DISCUSSIONS AND CONCLUSIONS 

Considering the longitudinal characteristic, in this paper, 

a helical CT iterative reconstruction method is developed for 

noise reduction of quarter dose CT. The proposed method 

outperforms the QD-TVSIR and QD-DLSIR in both 

quantitative and subjective measures. Considering the 

computational cost for the proposed algorithm, the main 

function is implemented in GPU mode, which is significantly 

improved the computational efficiency. In th near future, more 

comprehensive evaluations will be performed to evaluate the 

proposed method with different dose levels. 
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