
  Abstract—Material decomposition is an important application 
of spectral Computed Tomography (CT). However, traditional 
post-processing material decomposition algorithms are based on 
voxel-local of reconstruction image, which leads two problems. 
First, ignoring the beam hardening problem. Second, not taking 
advantage of priori knowledge well. In order to solve these two 
problems processing spatial specificity, inspired by the work, we 
import Deep Learning technique to deal with multi-material 
decomposition. After been trained by plenty of samples, Deep 
Learning network can break the limit of voxel, reducing the 
influence of beam hardening and modeling the human body. We 
build a Convolutional Neural Network (CNN) which is a 
simplified version of VGG16 net, and simulate some 
reconstruction data of spectral CT to train the network. 
Compared to the results of solving linear equations, the CNN 
method turns out to work much better in the test samples. As the 
conclusion, we think CNN is useful in the multi-material 
decomposition, but there still remains many researches to work, 
such as the source of training data, the balance between the priori 
knowledge and measurement. On the other hand, this work 
focuses on post-processing, but using Deep Learning to deal with 
the pre-processing multi-material decomposition is also a 
potential direction. 

Index Terms—spectral CT, material decomposition, CNN, deep 
learning 

I. INTRODUCTION

he appearance of spectral CT enables CT to distinguish 
photon by different energy, which makes using the 

reconstruction images of CT at difference energy bins to do 
post-processing become possible. However, the reconstruction 
images of CT, or the linear attenuation coefficient of scanned 
object cannot reflect its inner information directly. In general, 
we concern more about the distribution of specific materials in 
the scanned object, such as fat, contrast agent, etc. For example, 
in clinic, using the result of material decomposition can 
measure the body fat rate, or in the case needed contract agent, 
can isolate the agent individually as the blank test [1]. 

Many material decomposition algorithms have been 
proposed with the popularity of spectral CT. These algorithms 
can be divided into two kinds roughly. One is the pre-process 
method which takes the measurement from detectors as the 
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input data, and the other one reconstructs the image at different 
energy first, then uses the image as the input of the material 
decomposition algorithm, which is called post-process method. 
However, traditional material decomposition algorithms are 
based on voxel-local of reconstruction image, which leads 
some problems.  In order to solve these problems, inspired by 
the work [4], we import the Deep Learning technique and 
propose a post-processing method with CNN. 

Recently, the Deep Learning technique has become more in 
more popular in many fields [4, 6]. In image analysis, the CNN 
can extract the features in the image, which has turned out to be 
effective in image classification [5-7]. Therefore, we can model 
the result of material decomposition of a cross section with 
CNN to solve the problems in traditional material 
decomposition algorithms. In this work, we build a CNN and 
train it to deal with the decomposition problem, and it shows 
some advantages. 

II. METHOD

As we know, the reconstructed image of CT is the X-ray 
linear attenuation coefficient ݔ)ߤԦ, (ܧ  of the scanned object, 
where ݔԦ is the spatial position and E is energy bin. 

In the post-processing, knowing ݔ)ߤԦ,  of scanned object (ܧ
by reconstruction algorithm, we need a set of basis functions to 
solve ݔ)ߟԦ, ݈). In the situation of duel-energy CT, since the 
information comes from only two energy bins, two kinds of 
materials are chosen as basis materials. By adopting the 
empirical formula between the adoption cross-section of X-ray 
and the relative atomicity, ݔ)ߟԦ, ݈) can be presented as a linear 
combination of these two basis materials [2]. But in the case of 
multi-energy CT, we can set all the materials of scanned object 
as the basis materials (generally speaking, the number of 
materials should be less than the number of energy bins), which 
can be presented as [3]: ݔ)ߤԦ, (ܧ =෍ݔ)ߟԦ, ே೗(ܧ)௟ߤ(݈

௟ୀଵ , ܧ = 1… ாܰ  (1)

where ௟ܰ  is the number of materials, ாܰ  is the number of 
energy bins, and ߤ௟(ܧ) is the linear attenuation coefficient of 
material l at energy bin E, which is a known quantity. 
Intuitively, if ாܰ ≥ ௟ܰ , by solving the equations (1) 
simultaneously at different energy bins, ݔ)ߟԦ, ݈) can be figured 
out. 

However, there are two problems with traditional material 
decomposition algorithms which based on (1). 

First, ignoring the beam hardening problem. Although the 
beam hardening is caused by reconstruction, which should not 
be classified into decomposition task, it’s an important source 
of the error of material decomposition. Because the dose of 
X-ray used in CT, especially the medical CT, is limited, which
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leads the detector has to balance between the number of energy 
bins and statistical noise [8]. If the energy bins are too many, 
the number of photons stored in every energy bin become fewer, 
which makes the statistical noise become higher. On the other 
hand, if the number of energy bins is too few, the information 
can be gotten from different energy bins becomes less, and the 
beam hardening problem becomes more serious. That’s 
because the X-ray used in CT is generated by bremsstrahlung, 
which has certain energy distribution, and the adoption of 
X-ray from scanned object also has distribution. After the 
X-ray goes across a certain thickness of the scanned object and 
reaches its inside, the energy distribution has changed.  
Obviously, the wider of energy bins’ width, the bigger of the 
beam hardening error. What’s more, in the medical CT, since 
the attenuation coefficient of the materials in human body is 
close, the system consisted of (1) is ill conditioned, the beam 
hardening will cause a bigger error in decomposition. 

Second, not taking advantage of priori-knowledge well. 
Among these traditional material decomposition algorithms, in 
order to reduce error, most of them import the regularization 
terms artificially. These regularization terms, no mater of 
which have the form of Gibbs energy function, or the form of 
total variation, are based on the priori-knowledge that the 
images in nature should be piecewise smooth [9], then impose 
punishment on the drastic change part in the decomposition 
result. However, in the medical images, there is no too much 
difference in the same cross section of human body, so it’s 
deducible that there is a good deal of priori knowledge which 
isn’t used well. For instance, when a post-processing 
decomposition algorithm calculating the result of a voxel, and 
the reconstruction result of it happens to be wrong (which is 
unavoidable) for noise or beam hardening, if we have some 
priori knowledge like “this part should belong to bones”, the 
error could be reduced. However, traditional algorithms are 
based on voxel, what they can consider is the voxel itself or its 
neighborhood, and it’s hard to model the whole cross section, 
which doesn’t take advantage of priori knowledge well. 

In the case of medical CT reconstructing a certain cross 
section of human body, the two problems mentioned above 
have a kind of spatial specificity. For the same position of 
different people and the same cross section, the causes of bean 
hardening are similar, meanwhile, the priori information of the 
same position is also similar. 

In order to avoid the spatial specificity problems, we should 
enlarge our visual field instead of considering voxel or its 
neighborhood only. On the other hand, spatial specificity 
means it’s a feature of the image, which can be model in the 
CNN. Using large number of the result of reconstruction and 
their decomposition results as the training data and labels, CNN 
can find the features of the spatial distribution and stored them 
in the network abstractly, once input a new reconstruction 
image, CNN can use the priori information to predict the 
decomposition of a voxel, which may reduce the influence of 
beam hardening and statistical noise. What’s more, having 
trained over, the forward process of CNN is quite fast, which is 
another advantage of using CNN to work out the decomposition 
problem. 

 
Fig.1. The phantoms used in this work. All the phantoms are similar to each 

other, but the size, position, direction of every ellipse and the concentration of 
the five materials are different (but close). 

III. NUMERICAL SIMULATION AND RESULTS 
In order to get the training data, we generate 20 phantoms 

shown in Fig.1. All phantoms are similar, and have five 
materials. The ߤ௟(ܧ) is from the work [8], and shown in the 
Table.1. Inspired by the work [3], the generating phantoms 
meet the constraints: 

 ෍ݔ)ߟԦ, ݈) = 1ே೗
௟ୀଵ0 ൑ ,Ԧݔ)ߟ ݈) ൑ 1 (2)

The X-ray tube spectrum used in this work is the same as the 
work [8], which is divided into 8 energy bins. In the simulation, 
we adopt the fan-beam mode of X-ray source. The phantoms 
are 2*2cm, discretized into a 128*128 grid. There 512 detectors 
line in 4.5cm long, and they are apart from the center of the grid 
for 5cm. The number of views over 360 degrees is 360. 

 
Table.1. The ID of materials in this work and in the work [8] 

This work (the order in Fig.4) Work [8] (the indexes in Fig.4) 
1 3 
2 2 
3 7 
4 4 
5 1 

 

 
Fig.2. The flow chart shows that the 8*32*32 pieces are cut from a 

reconstruction images, whose size is 8*128*128, and the CNN maps a piece to 
the material decomposition result of the central voxel of that piece. 

,௜,ଵߟ) ,௜,ଶߟ ,௜,ଷߟ ,௜,ସߟ  ௜,ହ) ்CNNߟ
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We iterate ART algorithm for 20 times to reconstruct these 
phantoms at each energy bin individually. After reconstruction, 
we get 20 images, whose size is 8*128*128. 

As the function (1) shows, although the decomposition 
problem is almost a voxel-local problem, considering beam 
hardening, we cut the image into 8*32*32 pieces, and set the 
material decomposition result of its central voxel as its 
supervising label of the output of CNN, which is shown in Fig.2. 
In this way, we get 20*128*128 samples, and we can get the 
result of material decomposition of an image by scan it with 
CNN piece by piece. 

CNN is coded by the Keras frame using the Theano as the 
backend. We use a structure similar to the VGG16 net [5], 
which shown in Fig 3. We build the training set by 15*128*128 
samples from 15 phantoms to train CNN, the validation set by 
3*128*128 samples from other 3 phantoms to prevent 
over-fitting, and the test set by the rest 2*128*128 samples 
from the rest 2 phantoms to evaluate the effect of CNN. Since 
this is not a classification problem, we use the Mean Square 
Error as the loss function, and use Adagrad algorithm as the 
optimizer to train CNN. 

Fig.3. The CNN used in this work. All the convolutional kernels’ size is 3*3, 
and the activation function is ReLU except the last one is Softmax. In order to 
increase the linearity of CNN, we remove the dropout layer in VGG16 net [5]. 

The results of 2 test set is shown in Fig.4. After training, the 
MSE reaches 4.33E-4 for training set, 5.93E-4 for validation set 
and 5.25E-4 for test set. As a contrast, we solve (1) with the 

constraint (2) in least square voxel by voxel. The MSE of 
decomposition result for the test set is 2.85E-2. 

(a) 

(b) 
Fig.4. The material decomposition results of CNN method and solving 

equations. The first line is the generated phantom, and its five materials is in 
Table.1. The second line is the results of CNN, and the last line is the results of 
solving equations. Obviously, the quality of the second line is much better than 
the third line. 

By heightening the contrast of reconstruction images, we can 
observe that there are similarities of the beam hardening among 
different phantoms, as shown in Fig.5. The spatial specificity of 
beam hardening exists indeed. This is one of the reasons that 
CNN can be effective in the material decomposition problem. 

Fig.5. There are similarities in the same material of different phantoms. 

We test different coefficient of reconstruction in the 
simulation. For example, decreasing the times of ART while 
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increase the times of TV [9] can make images dimmed. But we 
observe that as long as the samples of test set and training set 
are generated on the same reconstruction coefficient, CNN can 
predict a decent result, which is another reflect of the 
availability of Deep Learning. 

IV. CONCLUSION 
From this preliminary research, CNN shows its availability 

in the material decomposition problems, which is a voxel-local 
partly linear problem. But there are some problems remaining 
to be solved. The most important problem is in the CT system 
in reality, how can we get the supervising label? Here are some 
possible ways. Use model (real or virtual), or use monochrome 
X-ray source to get the result of material decomposition 
without beam hardening problem, then reconstruct this result to 
get the training samples. 

On the other hand, CNN may erase the situation that doesn’t 
appear in the training set (for example, some rare tumors), how 
to balance the priori knowledge and the measurement is a 
considerable problem. 

In the future, we can try some other network to do the 
material decomposition (for example, the Deep Residual 
Network, which displays better than VGG16 in the image 
classification [7]). Oh the other hand, if we can skip the 
reconstruction and deal with the measurement from the detector 
directly, which turns the post-processing into pre-processing, 
we may avoid the beam hardening problem. But this is not a 
voxel-local problem, which cannot be solved by CNN. We may 
need some methods like Recurrent Neural Network (RNN) to 
generate the material decomposition from sinograms. 
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