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Abstract—Machine learning including deep learning is rapidly 

gaining popularity as a generic solution to problems across many 

fields. In medical imaging, deep learning has been successfully 

applied to image processing and analysis. In this paper, we employ 

a convolutional neural network (CNN) to address the long-

standing problem of metal artifacts in CT images. Despite a vast 

number of metal artifact reduction (MAR) methods developed 

over the past four decades, there remain clinical areas in need of 

better results. Specifically, proton therapy planning requires high 

image quality for accurate tumor volume estimation. Errors in the 

image reconstruction may lead to treatment failure. In this paper, 

we merge deep learning with a state-of-the-art normalization-

based MAR algorithm, NMAR, to correct metal streaks in critical 

image regions. Our results show that deep learning is a novel way 

to address CT reconstruction challenges, yielding images superior 

to the state of the art. 
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I. INTRODUCTION

Metal artifacts are a long-standing problem in CT that 

severely degrade image quality. Many MAR techniques were 

developed over the past four decades (see [1] for a 

comprehensive overview), but their translation to clinical 

settings is not always feasible or totally successful. For those 

algorithms that have been adopted clinically, there remain 

important applications in which a sufficient image quality 

cannot be achieved, such as for proton therapy planning. Tumor 

volume estimation is very sensitive to image reconstruction 

errors, and miscalculation due to metal artifacts may result in 

either tumor recurrence or radiation toxicity [2], [3]. 

A most widely developed class of MAR methods is 

projection completion, in which corrupted data inside the metal 

trace is refined in the sinogram domain. The new data is often 

synthesized by an interpolation technique [4]–[7], reprojection 

from a prior image [8]–[11], or a combination of both that 

involves normalization [12]–[14]. Among these, NMAR is 

considered a state-of-the-art method that employs interpolation 

and normalization to correct data in the metal trace [13].  

Other types of MAR techniques include data acquisition 

improvement, physics-based pre-processing, iterative 

reconstruction, and image post-processing. While image post-

processing algorithms have had only limited success [15], [16], 

their merits are better seen when combined with projection-

domain correction [17]. None of these methods are satisfactory 

for challenging applications, especially proton therapy 

planning. 

Deep learning is a novel approach for reducing metal artifacts 

in CT images. The field of deep learning has risen rapidly in 

recent years to perform many complicated tasks with new twists 

[18]. Deep networks, such as a CNN, are powerful in their 

ability to extract detailed features from large datasets, enabling 

great successes in image processing and analysis [19]–[21]. In 

a supervised learning process, the network is trained with 

labeled data/images to learn how to map features between the 

input and the label. Once trained, the network uses forward 

prediction to estimate an output given an unlabeled input. 

The main objective of our project is to reduce streak artifacts 

in critical image regions outside the metal object by combining 

a CNN with the state-of-the-art NMAR method. We train the 

network to create an end-to-end mapping of patches from 

metal-corrupted CT images to their corresponding artifact-free 

ground truth. Since raw projection data is not always accessible 

in commercial scanners, these initial experiments are done via 

numerical simulation to demonstrate the feasibility and merits 

of deep learning for MAR. 

II. METHODS

A. Data generation

All training and test data for the CNN was generated using an 

industrial CT simulation software, CatSim (General Electric 

Global Research Center, Niskayuna, NY) [22]. Simple hip 

phantoms were defined with elliptical areas of water and bone 

in random aspect ratios. A metal ellipse of either titanium or 

stainless steel was set near each bone region to represent the hip 

implants. Two scans were simulated for each phantom based on 

a GE LightSpeed VCT system architecture. The first scan 

followed a standard clinical protocol, with key parameters 

including a tube voltage of 120 kVp, a tube current of 300 mA, 

108 photons, 300 detectors, and 360 views at uniform projection 
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angles between 0-360 degrees. The 512x512 reconstructed 

image contained severe artifacts. For the initial correction, the 

image was reconstructed using the NMAR algorithm. This 

NMAR result served as the input to the network. A second scan 

on each phantom was simulated with the same parameters, 

except that a sufficiently higher number of photons were 

assigned a single energy of 70 keV to generate a monoenergetic 

image without artifacts. This served as the ground truth and 

target of the network. A total of 5,000 phantoms containing 

titanium or stainless steel implants were scanned. Fig. 1 

displays an example image of each case with the streak regions 

outlined by dotted boxes. From the full images, two million 

patches of size 32x32 were extracted from the streak regions to 

form the dataset for training the CNN. 

 

B. Network design and training 
 

The network structure used in this paper was inspired by the 

study on image super-resolution in which a low-resolution input 

image was mapped to a high-resolution output [23]. It is a 

simple CNN with six convolutional layers. The first five layers 

contain 32 filters and a 3x3 kernel to extract features from the 

input patch and map them to the target patch. Each of the layers 

is followed by a rectified linear unit (ReLU) to introduce non-

linearity. The last layer sums the estimates with 1 filter and a 

3x3 kernel to form the final output patch of size 20x20. Fig. 2 

illustrates the network structure. 

Training was completed in the Caffe framework [24]. The 

base learning rate was 10-4 with a reduction factor of 0.5 after 

every 50k iterations. One million training iterations were 

carried out to minimize the loss, which is the mean squared 

error between the input and the target patch for each training 

iteration (batch size of 50).  
 

 
III. RESULTS 

 

The network performance was tested using patches from the 

streak regions (dotted boxes) in Fig. 1. The NMAR corrected 

images served as the input to the network, and the forward 

prediction process mapped the input to the ground truth. The 

ground truth and input streak regions extracted from Fig. 1 are 

shown in Fig. 3 for the representative titanium and stainless 

steel cases. The CNN prediction significantly reduced streaking 

artifacts for both types of metal implants.  

It can be observed that the titanium case was mapped well to 

the ground truth, given that the input contained much less 

severe streaks than the stainless steel case. For stainless steel, 

although artifacts remain, the CNN still recovered much of the 

underlying background. Quantitative analysis shows that the 

CNN yielded substantially higher image quality than NMAR 

alone as measured by structural similarity index (SSIM) and 

peak signal-to-noise ratios (PSNR). 

 

 

 

 

Fig. 1. Test images generated by CatSim in the cases of the titanium (blue) and stainless steel (red) implants respectively. The ground truth is a 

70 keV monoenergetic image (as the network target), the uncorrected image is the initial reconstruction from a 120 kVp scan, and the NMAR 
image is the corrected reconstruction using the NMAR algorithm (as the network input). The dotted boxes outline the streak regions from which 

patches were extracted for network training. 
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Fig. 2. Convolutional neural network containing six convolutional layers. Layers 1 through 5 have 32 filters and a 3x3 kernel, while the sixth 

layer has 1 filter and a 3x3 kernel. The first five layers are followed by a rectified linear unit for non-linearity. Features are extracted from a 32x32 

input patch. The output prediction from these features gives a 20x20 patch. 

SSIM 
PSNR 

0.8739 
38.8606 

0.8777 
38.5211 

0.9981 
59.6020 

SSIM 
PSNR 

0.7231 
32.3871 

0.8329 
36.5863 

0.9907 
54.7951 

Fig. 3. CNN results for streak regions from Figure 1 and corresponding image quality metrics in reference to the 

ground truth. The NMAR image serves as the network input so that the MAR results will be better than the state of 
the art.  
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IV. DISCUSSIONS AND CONCLUSION 

 

This pilot study has demonstrated that deep learning is a 

novel way to correct metal artifacts in CT images, and this 

improvement is in addition to the state of the art performance 

achieved using any existing approach. Our CNN combines with 

the state-of-the-art NMAR algorithm to provide substantial 

reduction of streaks in critical image regions. Visually, the best 

results were achieved for titanium implant cases. Titanium 

produces less severe artifacts than stainless steel [25], and the 

network has an easier path to achieving effective correction. In 

the case of stainless steel implants, the streaks were more 

severe, and the CNN prediction still corrected for residual 

artifacts but less effectively. Our results are promising in that 

there is a hope for further recovery of corrupted data beyond 

what NMAR achieved alone. 

There is still great room for improvement in the MAR deep 

learning process, particularly for the challenging implant types. 

Our results may be improved by increasing the size and 

complexity of the training dataset and modifying the network 

structure to better train on residual error functions [26]. With 

more efforts, we will test images with more realistic tissue 

background and complex implant structures. 

In summary, our work has indicated that deep learning can 

have an important role in achieving better image quality for 

MAR and other specific CT tasks, and in particular may enable 

more accurate tumor volume estimation for proton therapy 

planning. 
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