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Abstract–In X-ray CT, projections are sometimes truncated 

due to size mismatches between small detectors and/or large 

objects, which introduce truncation artifacts in reconstructed 

images. In this work, we aim at addressing the truncation 

problem using the idea of “big data”-aided analysis/synthesis. 

For a specific cross-section position of a patient, e.g., pelvis in this 

paper, we collect hundreds CT images to build a database. We 

propose the “image-sum” as the feature of each image in the 

database. With this feature, we can find the most relevant image 

to the truncated projection from the database. Finally, the 

forward projections of the selected image are used to extend 

truncated projections. The experimental results show that the 

proposed method can reduce the truncation artifacts successfully. 

Keywords—Computed tomography; truncation artifacts; big 

data; projection extension. 

I. INTRODUCTION

N some imaging cases, the CT scan field of view (FOV)

cannot cover all the parts of imaging objects, causing

truncation in the projection domain. This leads to bright 

truncation artifacts in the images directly reconstructed by the 

conventional filtered backprojection (FBP) algorithm, and the 

image quality is significantly affected.  

So far, various techniques have been proposed to deal with 

the data truncation problem. Data truncation can be viewed as 

the interior tomography, and the region-of-interest (ROI) can 

be iteratively reconstructed [1, 2]. Although the image in a 

ROI can be accurately obtained, it is time-consuming and has 

not been applied in commercial CT. A major class of practical 

approaches is to extend the truncated projections based on 

extrapolation. Hsieh et al. assumed the cross-section of a 

patient as a water cylinder, and used the magnitudes and 

slopes of the projections at the location of truncation to 

estimate the missing projections [3]. Later, a better 

performance was achieved by replacing the water cylinder fit 

with a Gaussian extrapolation [4, 5]. Maltz et al. approximated 

the thickness of the patient along the projection rays by 

calculating water-equivalent thicknesses to estimate the 

truncated data [6]. However, it might lead to inaccuracy 

estimation for non-water tissues. Recently, Xia et al. proposed 

another water cylinder extrapolation based algorithm. In their 

work, two nontruncated fluoroscopic images were adopted and 

the patient-specific a priori shape was used to estimate the 

missing projections more precisely [7]. By comparison, 

Kolditz et al. [8] obtained patient size and shape information 
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from a nontruncated low-dose CT scan for projection 

extrapolation. With the help of those additional information, 

these methods achieved excellent performance in terms of 

artifacts reduction. However, the requirement of additional 

information usually limits their practical applications. 

The above analysis suggests that introducing a priori 

information benefits the extrapolation. Different from the 

aforementioned methods, in this work, we try to explore the 

additional information from “big data”. To achieve this goal, a 

database consisting of various CT images is built, and then a 

way is developed to select a proper image to assist estimating 

the missing projection data.  

II. METHODS

Due to the similarity of human anatomy structures, for a given 

cross-section position, the distributions of tissues are usually 

similar among different patients in clinical CT images. As a 

result, it is reasonable to find another patient’s CT image that 

is similar to the truncated data, and the forward projection of 

this image (referred as to the reference image) can be applied 

to extend the truncated data. The key point of this idea is how 

to find such a similar image to a specific truncated data.  For 

this purpose, we build a database consisting of CT images at a 

specific position (e.g., pelvis in this paper). We also propose 

two terms the “image-sum” and the “projection-sum” to 

evaluate the similarity of a CT image in the database and the 

truncated data. Finally, the most similar image is selected as 

the reference image.  

A. Build a Database

Because pelvic CT images have higher probability to suffer 

from truncation, we build a database consisting of pelvic CT 

images to demonstrate our idea. To be a qualified image in the 

database, all the tissues should be covered by the image so that 

the entire cross-section information is included.  

We introduce the “image-sum” as a feature of each image, 

and Fig. 1 depicts how to compute this feature. As shown in 

Fig. 1, the radius of FOV is defined as R, and 𝐿𝑘  is a line

passing through the system center along the angle 𝛽𝑘 . In

addition, 𝜇𝑖 is the linear attenuation coefficient of an arbitrary

pixel in the CT image, and 𝑑𝑖𝑘 represents the distance from the

pixel 𝜇𝑖  to the line 𝐿𝑘 . Let Φ𝑘  be the set of pixels whose

distances to 𝐿𝑘 are smaller than R, namely, Φ𝑘 = {𝑖: 𝑑𝑖𝑘 ≤ 𝑅}.

Given a group of angles 𝛽 = [𝛽1, 𝛽2,∙∙∙, 𝛽𝑘 ,∙∙∙, 𝛽𝐾 ], the image-

sum vector of the tth CT image is denoted as 𝜙𝑡 = [𝜙1
𝑡 , 𝜙2

𝑡 ,∙∙∙

, 𝜙𝑘
𝑡 ,∙∙∙, 𝜙𝐾

𝑡  ] and computed as 

𝜙𝑘
𝑡 =

∑ 𝜇𝑖𝑖∈Φ𝑘

𝑠2  ,  (1) 
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where s is pixel size of the CT image. The denominator of 

Eq.(1) is used for normalization.  

B. Find a Reference Image from the Database 

The obtained truncated projection is denoted as 𝑝𝑡𝑟, which is 

rebinned to parallel projections  𝑝𝑝𝑎𝑟𝑎. The detector bin length 

of parallel projections is b. The parallel projection is also 

bounded by the FOV as shown in Fig. 2. The projection-sum 

at the angles 𝛽 = [𝛽1, 𝛽2,∙∙∙, 𝛽𝑘 ,∙∙∙, 𝛽𝐾  ]  is denoted as 𝜓 =
[𝜓1, 𝜓2,∙∙∙, 𝜓𝑘 ,∙∙∙, 𝜓𝐾  ], which is computed as 

𝜓𝑘 =
∑ 𝑝𝛽𝑘

𝑝𝑎𝑟𝑎

𝑏
,                           (2) 

where 𝑝𝛽𝑘

𝑝𝑎𝑟𝑎
 is the vector of parallel projections at the angle of 

𝛽𝑘, and ∑ 𝑝𝛽𝑘

𝑝𝑎𝑟𝑎
 means the summation of these measurements. 

It is clear that the meanings of image-sum and projection-sum 

are identical, and both of them represent the summation of the 

image pixels along a given angle and bounded by the FOV. To 

find the closest image to the truncated data, we compare the 

𝜙𝑡 and 𝜓 as follows, 

𝑡∗ = arg min
𝑡

‖𝜓 − 𝜙𝑡‖2
2,                      (3) 

where 𝑡∗  is the index of the most similar image. In our 

implementation, ‖𝜓 − 𝜙𝑡‖2
2 is computed with respect to each 

image in the database, and the image with the smallest 

‖𝜓 − 𝜙𝑡‖2
2 is selected as the reference image. 

 Because CT data are untruncated in the database, it is not 

applicable to patients who are not fully covered by the FOV of 

existing CT scanners. Hence, an adaptive scaling is introduced 

to obtain a suitable reference image. Therefore, we have 

𝑡∗ = arg min
𝑡

‖𝜓 − 𝑎𝑡𝜙𝑡‖2
2,                      (4) 

where 𝑎𝑡 =  ∑ 𝜓𝑘𝑘 ∑ 𝜙𝑘
𝑡

𝑘⁄  is a scaling factor, and the image 

selected from the database is scaled according to the factor 𝑎𝑡.  

C. Extend Truncated Projections 

The forward projection 𝑝𝑟𝑒𝑓  of the reference image is obtained 

in the same CT geometry as that for the truncated projection 

𝑝𝑡𝑟, but with a larger number of detector bins so that the entire 

reference image is covered in the enlarged FOV. The numbers 

of detector bins of 𝑝𝑡𝑟 and 𝑝𝑟𝑒𝑓  are denoted as 𝑁𝑡𝑟 and 𝑁𝑟𝑒𝑓, 

respectively. 

Fig. 3 depicts the method to obtain 𝑝𝑒𝑥 from 𝑝𝑡𝑟 and 𝑝𝑟𝑒𝑓 . 

As shown in Fig. 3(a), for a given projection view, differences 

of the two projections at the truncated boundaries are ∆1 and 

∆2, respectively. These obvious disconnections may introduce 

artifacts in the reconstructed images. Hence, it is necessary to 

introduce a new projection 𝑝𝑑𝑖𝑓𝑓  for smooth transition. As 

illustrated in Fig. 3(b), the projection differences reduce 

gradually from the truncation boundaries to the two ends of 

the extended projection. Then, the extended projection 𝑝𝑒𝑥 at a 

specific view is given as below 

𝑝𝑗
𝑒𝑥 = {

𝑝𝑗
𝑡𝑟 ,          𝑗 ∈ Ω

𝑝𝑗
𝑟𝑒𝑓

+ 𝑝𝑗
𝑑𝑖𝑓𝑓

,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                      (5) 

where Ω is the set of indexes of available measurements in the 

projection. Finally, the corrected image is reconstructed from 

the extended projection using FBP.  

 

 
Fig. 1. Computation of the image-sum at a specific angle. The yellow circle 

indicates the FOV of CT scan. The boundaries of the red and green 

rectangular regions are tangent to the circle, and along the specific angles. 𝐿𝑘 

is the central line of red rectangle of the angle 𝛽
𝑘
. 𝜇

𝑖
is an arbitrary pixel in the 

CT image, and 𝑑𝑖𝑘 represents distance from the pixel 𝜇
𝑖
 to the line 𝐿𝑘. The 

image-sum along a specific angle is computed by summing the CT image 

pixel values in the overlapped region of the rectangle at the angle and the CT 

image. 

 

 
Fig. 2. Computation of the projection-sum at a specific angle. The yellow 

circle indicates the FOV of CT scan. After rebinning, the parallel projections 
are obtained and the boundary projection rays are tangent to the FOV circle.   
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Fig. 3.  Illustration of the projection extension. (a) For a specific view, the 

projections of 𝑝𝑡𝑟
 and 𝑝𝑟𝑒𝑓

 are plotted in red and blue curves, respectively; (b) 

the black dot-curves 𝑝𝑑𝑖𝑓𝑓
 is used for smooth transition between  𝑝𝑡𝑟

 and 𝑝𝑟𝑒𝑓

at the truncation boundaries; (c) the final extended projection 𝑝𝑒𝑥
.

Fig. 6.  Plots of the image-sum and the projection-sum. The horizontal axis 
indicates the projection angles in the range of [0 179], and the vertical axis 

means the values of the image-sum and projection-sum. 

III. EXPERIMENTAL RESULTS 

In this work, we build a pelvic CT image database, which 

contained 790 images from 9 patients. These images are all 

collected from a SIEMENS SOMATOM Definition Flash CT 

scanner. All the images are reconstructed at 3mm slice 

thickness, each image consists of 512×512 pixels, and each 

pixel covers an area of 0.7422×0.7422 mm2. The number of 

elements in the image-sum vector is 180 with an angle interval 

of 1°. Several samples of the CT images in the database are 

shown in Fig. 4. 

To validate the effectiveness of the proposed method, a 

pelvic CT image is used to generate projections, and the 

patient of this image is not included in the dataset. In this test, 

an equidistant fan-beam geometry is assumed [9]. The source-

to-center distance and the source-to-detector distance are 595 

mm and 1085.6 mm, respectively. The view number is 984 

over a full scan. There are 920 detector bins, the bin width is 1 

mm, and only 530 detector bins are assumed available to 

simulate the truncation case. The reconstructed images have 

512×512 pixels each of which covers an area of 

0.7422×0.7422 mm2. 

In this experiment, Gaussian extrapolation [4, 5] is 

implemented as a competing method. The experimental results 

are shown in Fig. 5. The ground truth image is shown in Fig. 

5(a). The image reconstructed from truncated projections by 

FBP is given in Fig. 5(b), in which the FOV is highlighted 

with a yellow circle and bright truncation artifacts are very 

strong near the circle. The image corrected using Gaussian 

extrapolation is shown in Fig. 5(c) where artifacts are reduced 

significantly. The reference image selected from the database 

is presented in Fig. 5(b). Fig. 6 depicts the plots of the image-

sum and projection-sum of Fig. 5(d) and Fig. 5(a), 

respectively, and the red curve is the one in the database 

closest to the blue curve. Although density distributions in 

Figs. 5(a) and 5(d) are different, the patients’ size and shape 

are similar. After the correction using the proposed algorithm, 

truncation artifacts are reduced completely and part of the 

image information out of the FOV is restored. To 

quantitatively evaluate the performance for artifact reduction, 

the root mean squared error (RMSE) in the FOV is computed. 

RMSEs of uncorrected, Gaussian extrapolation and the 

proposed method are 215 HU, 28 HU and 12 HU, 

respectively. 

IV. DISCUSSION AND CONCLUSION

In this preliminary study, the number of images in the 

database is only 790, which is not sufficient as “big data”. To 

this point, it is possible to access CT images from internet to 

increase the size of datasets. Once various CT image cases are 

included, it intends to find a reference image that is extremely 

similar to the truncated image, which in turn improves the 

performance of projection extension. 

In this work, all the images in the database are from the 

same CT scanner. To involve as many CT images as possible, 

data may come from difference sources. Hence, these images 

may have different parameters, such as image size, pixel size, 

tube energies, patient positions, etc. These factors need to be 

considered in the construction of a dataset. 

In conclusion, we have presented a big data based method 

to address the projection truncation problem. A reference 

image is selected from the database, and then the forward 

projection of this reference image is used to extend the 
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truncated projection. Our experimental results show that the 

artifacts are reduced significantly and the image information 

outside the FOV is restored to some extent.  
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Fig.4. Samples of CT images in the database. 

 

 
Fig. 5.  Results of truncation artifact reduction. (a) The ground truth image; (b) image reconstructed from truncated projection without correction, with the FOV 
highlighted; (c) Gaussian extrapolation corrected image; (d)  reference image selected from the database; (e) corrected image obtained using the proposed 

method.  
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