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Abstract—To reduce the potential radiation risk, low-dose CT 

has attracted much attention. However, simply lowering the 

radiation dose will lead to significant deterioration of the image 

quality. In this paper, we propose a noise reduction method for 

low-dose CT via deep neural network without accessing original 

projection data. A deep convolutional neural network is trained 

to transform low-dose CT images towards normal-dose CT 

images, patch by patch. Visual and quantitative evaluation 

demonstrates a competing performance of the proposed method. 
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I. INTRODUCTION 

In the past decades, X-ray computed tomography has been 

widely used in diagnostic and interventional tasks. With the 

increasing number of CT scans, the potential radiation risk 

attracts an increasingly public concern [1]. Most commercial 

CT scanners utilize the filtered backprojection (FBP) method to 

analytically reconstruct images. One of the most used methods 

to reduce the radiation dose is to lower the operating current of 

the X-ray tube. However, directly lowering the current will 

significantly degrade the image quality due to the excessive 

quantum noise caused by an insufficient number of photons in 

the projection domain. 

Many approaches were proposed to improve the quality of 

low-dose CT images. These approaches can be categorized into 

three classes: sinogram filtering, iterative reconstruction and 

image processing. 

Sinogram filtering directly smoothens raw data before FBP 

is applied. Iterative reconstruction solves the problem 

iteratively, aided by some kinds of prior information on target 

images. Different priors were proposed, such as in terms of 

total variation (TV), nonlocal means (NLM) and dictionary 

learning [2-8]. Despite the successes achieved by these two 

approaches, they are often restricted in practice due to the 

difficulty of gaining well-formatted projection data since the 

vendors are not generally open in this aspect. Meanwhile, the 

iterative reconstruction methods suffer from heavy 

computational costs. In contrast to the first two categories, 

image processing does not rely on projection data, can be 

directly applied to low-dose CT images, and easily integrated 

into the current CT workflow. However, it is underlined that 

the noise in low-dose CT images does not obey a uniform 

distribution. As a result, it is not easy to remove image noise 

and artifacts effectively with traditional image denoising 

methods. Extensive efforts were made to suppress image noise 

via image processing for low-dose CT. Based on the popular 

idea of sparse representation, Chen et al adapted K-SVD to 

deal with low-dose CT images [9]. Also, a block-matching 3D 

(BM3D) algorithm has been proved powerful in image 

restoration for different noise types [10].  

Recently, deep learning (DL) has generated an excitement 

in the field of machine learning and computer vision [11]. DL 

can efficiently learn high-level features from the pixel level 

through a hierarchical framework. In the field of medical image 

processing, there are already multiple papers on DL-based 

image analysis, such as image segmentation, nuclei detection, 

and organ classification. To our best knowledge, there are few 

studies proposed for imaging problems. In this regard, Wang et 

al introduced the DL-based data fidelity into the framework of 

iterative reconstruction for undersampled MRI reconstruction 

[12]. Zhang et al. proposed a limited-angle tomography method 

with deep convolutional neural network (CNN) [13]. Wang 

shared his opinions on deep learning for image reconstruction 

[14]. 

Inspired by the great potential of deep learning in image 

processing, here we propose a deep convolutional neural 

network to transform low-dose CT images towards 

corresponding normal-dose CT images. An offline training 

stage is needed using a reasonably sized training set. In the 

second section, the network details are described. In the third 

section, visual effects and quantitative results are presented. 

Finally, the conclusion is drawn. 

II. MEHTHODS

A. Noise Reduction Model

Due to the encryption of the raw projection data, post-

reconstruction restoration is a reasonable alternative for 

sinogram-based methods. Once the target image is 

reconstructed from a low-dose scan, the problem becomes 

image restoration or image denoising. A difference between 

low-dose CT image denoising and natural image restoration is 

that the statistical property of low-dose CT images cannot be 

easily determined in the image domain. This will significantly 

compromise the performance of noise-dependent methods, 

such as median filtering, Gaussian filtering, anisotropic 

diffusion, etc., which were respectively designed for specific 

noise types. However, learning-based methods are immune to 

this problem, because this kind of methods is strongly 

dependent on training samples, instead of noise type. We 

model the noise reduction problem for low-dose CT as follows. 
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Let m nX   is a low-dose CT image and m nY  is the 

corresponding normal-dose image, then the relationship can be 

formulated as: 

( )X Y (1)

where : m n m n    represents the corrupting process due 

to the quantum noise that contaminates the normal-dose CT 

image. Thus, the denoising problem can be converted to find a 

function f : 

2

2arg min || ( ) ||
f

f f X Y    (2) 

where f  is treated as the best approximation of 1  .

B. Convolutional Neural Network

In this study, the low-dose CT denoising problem was

solved in the three steps: patch coding, non-linear filtering, and 

reconstruction. The proposed architecture of network is 

illustrated in Fig. 1. Next, we introduce each step in details. 

1) Patch encoding

Sparse representation (SR) is popular for image processing.

The key idea of SR is to represent extracted patches of an 

image with a pre-trained dictionary. Such dictionaries can be 

categorized into two groups according to how dictionary 

atoms are constructed. The first group includes analytic 

dictionaries such as DCT, Wavelet, FFT, etc. The other one is 

learned dictionaries, which can preserve more application-

specific details assuming proper training samples. This SR 

process can be often implemented as convolution operations 

with a series of filters, each of which is an atom. Our method 

is similar in the sense that SR is involved for patch encoding 

but with a neural network. First, we extract patches from 

training images with a fixed slide size. Second, the first layer 

to implement patch coding can be formulated as 

1 1 1( ) ReLU( ),C   y W y b (3)

where 
1W and 

1b  denote weights and biases respectively,   

represents the convolution operator, y  is extracted patch from 

images, and ReLU( ) max(0, )x x  is the nonlinear activation 

function. In CNN, 
1W can be seen as 

1n convolution kernels

with a fixed size of 
1 1s s . After patch encoding, we embed 

the image patches into a feature space, and the output 
1( )C y

is a feature vector, whose size is 
1n . 

2) Non-linear filtering

After processed by the first layer, a
1n -dimensional

feature vector is obtained from the extracted patch. In the 

second layer, we transform the 
1n -dimensional vector into

2n -dimensional one. This operation is equivalent to a 

filtration on the feature map from the first layer. The second 

can be formulated as 

   
1( ) ReLU( ( ) ), 2,...,9m m m mC C m   y W y b (4)

where 
mW is composed of 

mn convolution kernels with a 

fixed size of 
m ms s . If the desired network only has two 

layers, the output of this layer is the corresponding cleaned 

patches for the final reconstruction. Generally, inserting more 

layers is a way to potentially boost the capacity of the network. 

However, a deeper CNN is at a higher cost of computation 

including longer training time. In this work, 8 layers 

constructed this part. 

3) Reconstruction

In this step, the processed overlapping patches are merged

into the final image. These overlapping patches are properly 

weighted before their summation. This operation can be 

considered as filtration by a pre-defined convolutional kernel 

formulated by 

10 9 10( ) ( ) ,C C  y W y b  (5) 

where 
10W is composed of only 1 convolution kernel with a 

size of 
10 10s s , and 

3b has the same size as that of 

10 9( )CW y . 

Eqs. (3)-(5) all use convolutional operations, although they 

have been designed for different purposes. That is the reason 

why the CNN architecture is in use for our low-dose CT image 

denoising. 

4) Training

Once the network is configured, the parameter set,

1 10 1 10={ ,..., , ,..., } W W b b , of the network must be estimated to 

learn the function C . Given the training dataset 

1 1 2 2={( , ),( , ), ,( , )}N ND x y x y x y  with { }ix  and { }iy denoting 

normal-dose image patches and its corresponding noisy 

versions respectively, and N  being the total number of 

training samples, the estimation of the parameters can be 

achieved by minimizing the following loss function: 

2

1

1
( ; ) ( ) .

N

i i

i

L D C
N 

   x y    (6) 

The loss function is optimized using the stochastic gradient

descent method. 

III. EXPERIMENTS

To evaluate the performance of the proposed approach, the 
state-of-the-art methods, both iterative reconstruction and post-
reconstruction processing, were selected for comparison, 
including ASD-POCS, KSVD and BM3D. The parameters for 
the completing methods were set according to the 
recommendation in the original references. The peak signal to 
noise ratio (PSNR), root mean square error (RMSE) and 
structure similarity index (SSIM) were used as the quantitative 
metrics. All the experiments were conducted using MATLAB 
2015b on a PC (Intel i7 6700K CPU, 16 GB RAM and GTX 
980 Ti graphics card). 

Fig.1. The architecture of the proposed network. 
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A. Dataset Preparation

To evaluate the clinical performance of RED-CNN, a real

clinical dataset was used, which was authorized by Mayo 

Clinics for “The 2016 NIH-AAPM-Mayo Clinic Low Dose CT 

Grand Challenge”. The dataset contained 2378 3mm thickness 

full and quarter dose 512×512 CT images from 10 patients. 

The network was trained by part of 3mm thickness full dose 

and quarter dose image pairs. The rest of 3mm thickness 

quarter dose and full dose images were respectively regarded 

as the testing set and the standard of reference. For fairness, 

cross-validation was utilized in the testing phase. While testing 

on CT images from each patient, the images from the other 9 

patients were involved in the training phase. 

The input patches of the network were extracted from the 

original images with size 100m  . The slide step was 4. 

There are two reasons why patches were used, instead of 

whole images: one is that the images can be well represented 

by local structures; and the other is that deep learning requires 

a big training dataset and chopping the original images into 

patches can efficiently boost the number of samples.  

B. Parameter Setting

In this paper, three layers were used in the proposed

network. The filter number, we set 
1 2 9... 96n n n    , 

and the corresponding filter sizes, 
1s , 

2s ,…, and 
10s   were set 

to 5. The initial weights of the filters in each layer were 

randomly set, which satisfies the Gaussian distribution with 

zero mean and standard deviation 0.001. The initial learning 

rate was 0.0001 and slowly decayed to 0.00001 during the 

training process. 

C. Results

1) Visual inspection

For this purpose, we selected 2 representative slices from

the abdomen. Figs. 2 and 3 gives the results from different 

methods. In both the figures, the noise and artifacts caused by 

the lack of incident photons severely degraded the image 

quality. Some details and structures cannot be discriminated. 

All of the methods can eliminate the noise and artifacts to 

different degrees. However, due to the piecewise constant 

assumption by the TV minimization, ASD-POCS caused 

blocky effects in the resultant images. KSVD and BM3D 

produced new artifacts as indicated by the left red arrow in Fig. 

2. In Fig. 2(l), indicated by the red arrow in the bottom of the

image, CNN preserved the details better than all other

methods. Meanwhile, the zoomed parts (Fig. 2(g)-(l)) can

show that CNN has better visual effect for the low contrast

lesion marked by red dotted circle. In Fig. 3, a similar trend

was observed. The red arrows point to small structures and

vessels where only the proposed CNN method could recover

the most details and in the zoomed parts (Fig. 3(g)-(l)), our

Table I. Quantitative measurements associated with different 
algorithms. 

TV KSVD BM3D CNN 

PSNR 44.623 46.4276 45.6449 46.4848 

Fig. 2 RMSE 0.0059 0.0048 0.0052 0.0047 

SSIM 0.9793 0.9819 0.9805 0.9849 

PSNR 40.3023 40.6949 40.1139 41.4684 

Fig. 3 RMSE 0.0097 0.0092 0.0103 0.0084 

SSIM 0.9303 0.9330 0.9197 0.9465 

PSNR 42.3257 42.5578 42.5499 43.0178 

All RMSE 0.0077 0.0072 0.0073 0.0068 

SSIM 0.9514 0.9588 0.9590 0.9677 

Fig. 2. Results of a slice of abdomen images. (a) Original normal-dose image; 

(b) the low-dose images; (c) the ASD-POCS reconstructed image; (d) the 

KSVD processed low-dose image; (e) the BM3D processed low-dose image;
(f) the CNN processed low-dose image; and (g)-(l) the zoomed regions 

specified with the red boxes in (a)-(f).

Fig. 3. Results of another slice of abdomen images. (a) Original normal-dose 

image; (b) the low-dose images; (c) the ASD-POCS reconstructed image; (d) 
the KSVD processed low-dose image; (e) the BM3D processed low-dose 

image; and (f) the CNN processed low-dose image; and (g)-(l) the zoomed 

regions specified with the red boxes in (a)-(f). 
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method achieved best ability of lesion detection. However,  

2) Quantitative measurement 

To quantitatively evaluate the proposed CNN algorithm, 

PSNR, RMSE and SSIM were measured for all the images in 

the testing set. The results for the restored images in Figs. 2 

and 3 are in Table I. It can be seen in Table I that for both Fig. 

2 and 3, our proposed method obtained the best results, which 

are consistent to the visual inspection. The term “All” in Table 

I means the average values of the measurements for all the 

images in the testing set. It can be observed that all the metrics 

demonstrate the proposed CNN based method had the best 

performance. 

IV. CONCLUSION 

In this pilot study, we have evaluated the performance of a 
deep convolutional neural network for noise reduction in low-
dose CT. The results demonstrate the potential of CNN based 
method for medical imaging. In the future, the proposed 
network structure will be optimized and applied to other CT 
topics, such as few-view CT reconstruction, metal artifact 
reduction, and interior CT. Another possible direction is to 
investigate other network architectures to deal with dynamic 
and spectral CT problems. 
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