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Abstract: In iterative image reconstruction, different 
structures may reconstruct or evolve at different rates with 
iterations. From the difference between the images at 
different iterations, we extract feature images based on the 
evolution characteristics of different structures. We then 
use the feature images for advanced image processing. A 
TOF list-mode OSEM algorithm was used for iterative 
image reconstruction. A methodology was established to 
calculate feature images which distinguish regions of fast 
evolution (presumably associated with large and uniform 
structures) and slow evolution (associated with small 
structures such as lesions and cold regions). The feature 
images were then used to guide the in-reconstruction 
noise-suppression approaches (such as regularized 
reconstruction) and post-reconstruction noise-suppression 
approaches. Phantom and patient studies were used to 
demonstrate the proposed technique and its advantages. 
Results showed that with the feature images even very 
simple image domain techniques could achieve superior 
performance for the intended applications.   
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1. Introduction
Suppressing noise while preserving lesion/organ 

quality (edge-preserving) and quantification is critical for 
quantitative PET. Unfortunately, these two goals 
generally work in the opposite directions and compete 
against each other. For example, post-reconstruction 
filtering is a popular approach for noise suppression in 
medical imaging. Careful choice of filter types and filter 
parameters can in general provide an acceptable, even if 
not optimal, solution to the clinical needs. Such filters 
include low-pass filters, bi-lateral filters, and advanced 
adaptive filters, etc. Low-pass filters tend to smooth the 
image uniformly, thus, lesion contrast may be 
compromised. Bi-lateral filters [1] try to use the local 
image information to determine if an edge exists; the 
filters only smooth the regions to the sides of the edge and 
leave the edge untouched (not crossing the edge) or 
minimally smoothed. In this way, the edge is preserved, 
so lesion/organ quantitation can be preserved. The 
challenge, however, is that depending upon the filter 
parameters, edges may not be detected around some 
small/weak lesions/organs. Consequently, such 
small/weak lesions/organs will be filtered and the 

quantitative accuracy may be compromised. Other 
advanced adaptive filters, such as partitioned image 
filtering [2], guided filter [3], etc., also share similar 
challenges as the bi-lateral filters.  

Advanced image processing approaches aim at finding 
the best compromise between noise suppression and edge 
preservation. However, such approaches rely on image-
based intensity difference between voxels.  For 
small/weak lesions/organs, the intensity difference 
between them and the background may be small, the 
approaches might “think” there are no edges and smooth 
(over-smooth) such lesions/organs. 

Additionally, when count level is low and noise level 
is high, the edge detection can be significantly challenged 
by the noise. If the parameters for edge detection are 
chosen to enable the detection of weak edges (weak 
lesions/organs), then some bright noise spots can be 
“falsely” deemed as containing edges and be preserved as 
“lesion” rather than being smoothed out. On the other 
hand, if the parameters are chosen to enable sufficient 
noise suppression, then some weak/small lesions/organs 
may be smoothed when the difference between the 
lesions/organs and the background are too small to be 
deemed as edges. 

A non-local mean filter [4] may be able to filter images 
based on spatial similarity of different regions in the 
image.   Different regions with high similarity levels can 
be averaged so that a voxel in one region can be averaged 
with the corresponding voxel in another region. The 
filtering of the pixel does not have to be with its own 
neighboring voxels. This approach can be very effective 
if the similarity based on the intensity distribution in the 
regions can be reliably computed, and if the image does 
contain many regions with high level similarity. For 
nuclear medicine, such as SPECT and PET, due to the 
relatively high noise level and the complexity of patient 
updates, the effectiveness of non-local mean filtering may 
not be guaranteed. 

In this work, we describe a unique approach based the 
following observations in iterative PET reconstruction: 
• Large structures (low frequency signals) converge

faster than small structures (high frequency signals),
i.e., it takes fewer number of iterations for large
structures to converge

• Cold regions may converge more slowly than hot
regions

• Small lesions and edges are high frequency signals,
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thus converge slowly in general 
• Noise (high frequency signals) is typically slow to

converge
• Specific to PET image reconstruction, reconstruction

from data with time-of-flight (TOF) information
converges faster in general than without TOF
information
With these observations, we first use the difference

image between two iterations of iterative processing to 
generate a feature image. The feature image carries the 
“evolution” information of each object/organ between the 
iterations. The values of the same voxel in the images at 
different iterations are compared directly to each other, 
but not compared to its neighboring voxels in the 
individual images. Therefore, the voxel in the feature 
image carries the evolution information (similar to the 
“temporal” concept in dynamic studies). In contrast, 
conventional approaches use the difference of the voxel 
and its neighboring voxels in the same image for noise 
suppression purpose. Such difference is in the space 
domain, but not in the “temporal” domain. The feature 
image provides additional and complementary 
information to what can be obtained from the individual 
image in space domain, thus, it can be used to guide and 
improve advanced processing using the latter [5]. 

2 Methods 
To demonstrate how the proposed approach works and 

to evaluate its effectiveness, we used the data acquired on 
a digital PET system with TOF resolution of 325ps. 
NEMA IEC image quality phantom data were acquired 
using the standard NEMA image quality study protocol. 
Patient studies were acquired using standard whole body 
PET/CT protocols with clinically relevant count level.  

 Feature Extraction Methodology 
We first reconstructed the image using iterative TOF 

list-mode OSEM reconstruction with one iteration and 
four subsets (Image1), then with two iterations and four 
subsets (Image2). Then we subtracted Image1 from 
Image2 and took the absolute value of each voxel of the 
difference image to generate the absolute difference 
image followed by calculating the ratio of the absolute 
difference image to Image1 voxel-by-voxel to generate 
the ratio image Ratio12. Finally, for the resulted ratio 
image Ratio12, we clamped the voxel values to 0.15 and 
then divided the image by 0.15 to obtain the feature 
image. Note that the clamping value of 0.15 is just for 
example. One can use a smaller or larger value to gauge 
the level of changes in the images from different 
reconstructions. One will also adjust the value based on 
how the iterative reconstruction is performed, e.g., when 
TOF is used, image converges faster than non-TOF, one 

may need a larger clamping value for TOF reconstruction; 
when more subsets are used in each iteration, one may 
also need a larger clamping value. 

The feature image generated in this way has the 
following characteristics: 

a. Any voxel that has value change of 15% or more
from Image1 to Image2 has value 1.0;

b. Any voxel that has value change between 0 to
15% is linearly scaled to 0-1.0; and

c. Small structures (e.g., lesions), cold regions and
edges tend to have large percentage change
between iterations, the corresponding voxels in
the feature image have relative large values.

The steps above can be shown in Equation (1), in 
which Fi is the value of voxel i in the feature image, I1i 
and I2i are the values of the same voxel in Image1 and 
Image2, and α is the clamping value, which is 0.15 in the 
description above. 

𝐹𝐹𝑖𝑖 = �
1.0, 𝑖𝑖𝑖𝑖 |𝐼𝐼2𝑖𝑖−𝐼𝐼1𝑖𝑖|

𝐼𝐼1𝑖𝑖
≥ 𝛼𝛼

|𝐼𝐼2𝑖𝑖−𝐼𝐼1𝑖𝑖|
𝛼𝛼∙𝐼𝐼1𝑖𝑖

, 𝑖𝑖𝑖𝑖 |𝐼𝐼2𝑖𝑖−𝐼𝐼1𝑖𝑖|
𝐼𝐼1𝑖𝑖

< 𝛼𝛼
. (1) 

Note that we use linear scaling in step b above. One 
may also use nonlinear scaling for intended applications. 
This remains as an open area for performance 
optimization. 

 Using Feature Image for Image Filtering 
For post-reconstruction filtering, voxels that have 

value 1.0 in the feature image will not be filtered or will 
only be filtered slightly, in contrast, voxels with value 0 
will be filtered heavily. For values between 0 and 1.0, the 
values will be used to generate a weight to determine how 
much the voxel will be filtered. The resulted image will 
preserve the quantitation of the lesions and organ 
boundaries while smoothing out the noise in the 
background/uniform regions.  

The NEMA IEC phantom study was used for 
evaluation. We first generated a feature image 
(IEC_Feature) using the feature extraction methodology 
above. Then we reconstructed the image using a standard 
reconstruction protocol (IEC0) with three iterations and 
seventeen subsets per iteration.  

For the filtering scheme, the reconstructed image IEC0 
was first heavily filtered (IEC_Heavy), i.e., filtered three 
times using a 3x3 filter with equal kernel weight (box 
filter). The reconstructed image IEC0 was then slightly 
filtered using a 3x3 filter with kernel weight of 19 at the 
center and 1 at the other elements (IEC_Slight). The two 
filtered images were then combined voxel by voxel using 
the feature image as the weighting factor image to obtain 
the final image (IEC_Joint), as shown in Equation 2: 

IEC_Joint = (1.0 - IEC_Feature) * IEC_Heavy  
  + IEC_Feature * IEC_Slight. (2) 
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 Using Feature Image to Synthesize Two Differently 
Reconstructed Images 

In regularized reconstruction, different regularization 
schemes will lead to different image quality. For example, 
when using quadratic priors, regularized reconstruction 
leads to more smoothed images with the price that some 
small structures may be over smoothed; when using edge-
preserving priors, on the other hand, the edges in the 
image will be preserved, but some areas may not be 
sufficiently smoothed if the noise level is relatively high 
in those areas. 

Using the extracted feature image, we can reconstruct 
the images using two different schemes to obtain a smooth 
image and an edge-preserved image. Then we use 
Equation 2 to synthesize the two images into one joint 
image, i.e., using the smooth image to replace the heavily 
filtered image and the edge-preserving image to replace 
the lightly filtered image. The final image has the edge 
preserving advantage of the edge-preserved image and 
smoothing advantage of the smooth image since the 
feature image provides extra information for different 
handling of different regions. 

Note that this same synthesis approach can also be 
applied to two different images obtained from two 
different advanced post-reconstruction processing. For 
example, one can use the anisotropic diffusion filter 
(ADF) [6] with two different parameter settings to obtain 
an edge-preserving image and a smooth image, then 
synthesize the two images using the feature image to 

obtain the final image. 

 Using Feature Image for Advanced Reconstruction 
One can use the feature images for advanced iterative 

reconstruction such as selective convergence 
acceleration/deceleration, relaxation and regularization 
for different regions. For example, in regularized 
reconstruction, for voxels corresponding to values 1.0 in 
the feature image (voxels with large relative change 

between different iterations), one can use an edge 
preserving prior to guide the regularization; for voxels 
with small values in the feature image, one can use a 
quadratic prior to guide the regularization. The resulted 
reconstruction applies selective regularization using the 
extra information from the feature image, leading to 
optimized regularization in one reconstruction.  

For evaluation, we generated a hybrid 
simulation/patient dataset by simulating multiple small 
lesions and adding them into a real patient data set. This 
was done by (a) modeling the same PET system in GATE 
simulation, (b) using the attenuation map of the patient 
study and simulating multiple lesions in the body, 
assuming no activity in other regions, (c) generating list-
mode data of the lesions; and finally (d) adding the list-
mode data from the lesions to the list-mode data of the 
patient study. 

3 Results 
Figure 1 displays Image1, Image2, the Absolute 

Difference image, and the feature image obtained for a 
NEMA IEC phantom study with 30 million counts. Figure 
2 illustrates a simple filtering scheme of the NEMA IEC 
phantom image using the obtained feature image.  

According to Equation (1), a voxel in the final image 
is a weighted sum of the value of the same voxel in the 
heavily filtered image and that in the slightly filtered 
image, using the voxel value in the feature image to 
calculate the weight.  For lesions, the voxel value is 1.0 in 

the feature image, the weight is 1.0 for the slightly filtered 
image and 0 for the heavily filtered image. Thus the 
lesions have the values from the slightly filtered image. In 
contrast, the background regions have small value in the 
feature image, therefore, the weight for the heavily 
filtered image is large. Consequently, the obtained image 
showed preserved spheres and significantly filtered 
background. The jointly filtered image had significantly 

Figure 1. Example of extracting a feature image from images at two different OSEM iterations. Images were displayed using linear 
gray scale and each image was scaled to its own maximum. From left to right: Image1 (one iteration, four subsets), Image2 (two 
iterations, four subsets), the absolute difference, and the feature image. The small hot spheres and big cold spheres as well as the 
lung insert in the center (cold) had large changes between Image1 and Image2. The corresponding voxels of such objects in the 
feature image had large values. The uniform background (low frequency components) of the phantom had small values in the 
feature image (more black area in the gray scale display), indicating relatively small change from Image1 to Image2 due to faster 
convergence than the spheres (higher frequency or cold activity components). 
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suppressed noise in the background and well preserved 
sphere quantitation, as shown in the profile plots in Figure 
3. The profiles of the final image followed that of the
original image at the spheres, indicating nearly perfect
edge preservation; and followed that of the heavily
filtered image at the background, indicating effective
filtering of the background region.

Figure 4 are transaxial slices of the images of a patient 
study that illustrate the effectiveness of the synthesis 

application using the feature image. Figure 5 illustrates 
the effect of the same patient study using coronal slices. 
The liver region was significantly filtered in the 
synthesized image as compared to the edge-preserving 
image, but the small structures, such as the hot spot in the 
center, were preserved as compared to the smooth image 
using a quadratic prior. 

Figure 6 illustrates the effectiveness of using the 
feature image to guide what priors to use in regularized 

Figure 2. Example of using the feature image (from Figure 1) to post-filter the NEMA image reconstructed using the standard 
reconstruction protocol (three iterations, 17 subsets). From left to right: the NEMA image to be filtered, a heavily filtered image 
(box filter with window size 3, filter three times sequentially), a slightly filtered image (a 3x3 filter with element weight of 19 at 
center and 1 for the rest), and the jointly filtered image using the feature image. 

Figure 3. Line profiles (bottom) along the lines shown in the images (top) illustrate the effective sphere preservation and background 
noise suppression in the NEMA IEC phantom using the feature image in a simple weighted summation of a heavily filtered image 
and a lightly filtered image. 

Figure 4. Transaxial slices of the patient image illustrating the effectiveness of using the feature image (left) to synthesize an MAP 
reconstructed image using an edge-preserving prior (second) and an MAP reconstruction using a  (non-edge-preserving) quadratic 
prior (third, smooth image). The last image was the synthesized image that showed preservation of the small structures in the image 
and filtering of the soft tissue (indicated by the black regions in the feature image). The final image was better than both of the MAP 
images. 
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reconstruction [7]. With this approach, the final images 
showed superior lesion preservation and noise reduction 
in the background.  

4 Discussion 
In conventional image processing for optimized 

compromise of noise suppression and edge preservation, 
small/weak lesions/organs are more likely to be smoothed 
out because they have small intensity difference from the 
surround tissues. In this work, we use the feature images 
extracted from images at different iterations to optimize 
the advanced processing. The voxels of the lesions/organs 
in one image are compared to the same voxels in the 
image from a different iteration, rather than being 
compared to the voxels of their surrounding tissues in the 
same image. Although the intensity difference from their 
surround tissues may be small in each image, small/weak 
lesions/organs may have large relative changes between 
images at different iterations, and hence be identified in 
the feature images. 

The conventional approach can be understood as using 
the local spatial information of an image to identify 
lesions/organs. The proposed approach can be understood 
as using the “temporal” change from an earlier iteration to 
a later iteration to identify lesions/organs. The feature 
image, therefore, provides a conceptually new dimension 
of information for advanced processing (the evolution 
information, or temporal information) in addition to the 

information from the local images. Such temporal 
information potentially eases the challenges to traditional 
image domain processing, as was shown in the results that 
simply image domain processing could achieve superior 
performance when the feature images were used. 

The feature extraction performance is closely related 
to the clamping value. A smaller clamping value means 
more voxels will be deemed as features, hence more 
voxels will be untouched by the filtering, leading to more 
edge preservation and less noise suppression. The 
clamping value of 0.15 in the feature extraction 
methodology in this work was first determined 
empirically based on the NEMA IEC phantom study. It 
was then applied to all the patient studies. In general, PET 
image reconstruction convergence rate is higher for 
higher TOF timing resolution and lower for lower TOF 
timing resolution. The clamping value has to be re-
established accordingly for optimal performance for data 
with different TOF resolution.  

In the Methods section, we use images from different 
iterations to simplify the description. In iterative image 
reconstruction with multiple number of subsets, the image 
is updated at each subset. For the application of this 
approach, we are not limited to the use of the images from 
two iterations. In fact, we can in general use the images 
from any desired two different updates.  

There are two general considerations when choosing 
which updates/iterations to generate the feature images. 

Figure 5. Coronal slices of the same patient as in Figure 4, illustrating the effectiveness of using the feature image (left) to obtain the 
final image (right) that has both the advantage of edge-preservation of small features in the edge-preserving image (second, using 
edge-preserving prior for reconstruction) and the advantage of smoothness of the liver and mediastinum of the smooth image (third, 
using quadratic prior for reconstruction). 

Figure 6. Using the feature image for selective regularization in regularized reconstruction obtained excellent lesion preservation and 
noise reduction in the background through visual assessment. Left: Conventional OSEM reconstruction (no regularization). Lesions 
were sharp but background was noisy. Middle: regularized reconstruction using a quadratic prior for much suppressed noise in the 
background, but the small lesions were also smoothed and the contrast was decreased significantly. Right: using the feature image 
to guide the selective regularization voxel-by-voxel. Background noise was much suppressed while lesion sharpness and contrast 
were preserved. 
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One is to minimize the impact of noise and the other is to 
maximize the evolution contrast between different 
regions. In relatively early iterations/updates, image noise 
is relatively low as compared to late iterations/updates. 
Therefore, when we choose relatively earlier iterations for 
feature image extraction, we largely avoid the noise 
complication, hence minimizing the impact of noise in 
feature extraction. Also, in such updates/iterations, low 
frequency components have largely, if not fully, 
converged, hence they have small changes between the 
updates/iterations; while high frequency components 
have not converged yet, hence they have large changes. 
Consequently, the feature image will have small values 
for large/uniform regions and large values for small 
objects or cold regions, maximizing the contrast between 
different objects/regions as compared to using late 
updates/iterations.  

5 Conclusion 
A feature image extracted from images at different 

iterations provides voxel evolution information that can 
be used to design and guide advanced image processing, 
such as regularized reconstruction and image filtering. 
The voxel evolution information (can be understood as 
information in time domain) is complementary to the local 
density information in image domain, allowing simple 
image domain techniques to achieve superior 
performance that may not be achievable without the 
feature images. 
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