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Abstract—Increasing use of CT in modern medical practice
has raised concerns over associated radiation dose. Reduction
of radiation dose associated with CT can increase noise and
artifacts, which can adversely affect diagnostic confidence. De-
noising of low-dose CT images on the other hand can help
improve diagnostic confidence, which however is a challenging
problem due to its ill-posed nature, since one noisy image patch
may correspond to many different output patches. In the past
decade, machine learning based approaches have made quite
impressive progress in this direction. However, most of those
methods, including the recently popularized deep learning tech-
niques, aim for minimizing mean-squared-error (MSE) between a
denoised CT image and the ground truth, which results in losing
important structural details due to over-smoothing, although the
PSNR based performance measure looks great. In this work, we
introduce a new perceptual similarity measure as the objective
function for a deep convolutional neural network to facilitate CT
image denoising. Instead of directly computing MSE for pixel-
to-pixel intensity loss, we compare the perceptual features of a
denoised output against those of the ground truth in a feature
space. Therefore, our proposed method is capable of not only
reducing the image noise levels, but also keeping the critical
structural information at the same time. Promising results have
been obtained in our experiments with a large number of CT
images.

Index Terms—Low dose CT, Image denoising, Deep learning,
Perceptual loss

I. INTRODUCTION

X-ray computed tomography (CT) is a critical medical
imaging tool in modern hospitals and clinics. However, the
potential radiation risk has attracted increasingly more public
concerns on the use of x-ray CT [1], [2]. Lowering the
radiation dose tends to significantly increase the noise and
artifacts in the reconstructed images, which can compromise
diagnostic information. To reduce noise and suppress artifacts
in low-dose CT images, extensive efforts were made via image
post-processing. For example, the non-local means (NLM)
method was adapted for CT image denoising [3]. Based on
the compressed sensing theory, an adapted K-SVD method was
proposed in [4] to reduce artifacts in CT images. Moreover,
the block-matching 3D (BM3D) algorithm was used for image
restoration in several CT imaging tasks [5]. Image quality
improvement was clearly demonstrated in those applications,
however, over-smoothness and/or residual errors were also

observed in the processed images. Despite these efforts, CT
image denoising remains challenging because of the non-
uniform distribution of CT imaging noise.

With the recent explosive development of deep neural
networks, researchers tried to tackle this denoising problem
through deep learning. Dong et al. [6] developed a convolu-
tional neural network (CNN) for image super-resolution and
demonstrated a significant performance improvement com-
pared with other traditional methods. The work was then
adapted for low-dose CT image denoising [7], where similar
performance gain was obtained. However, over-smoothing
remains a problem in the denoised images, where important
textural clues were often lost. The root cause of the problem
is the image reconstruction error measurement used in all the
learning based methods. As revealed by the recent research [8],
[9], using the per-pixel mean squared error (MSE) between the
recovered image and the ground truth as the reconstruction
loss to define objective function results in over-smoothness
and lacking of details. As an algorithm tries to minimize per-
pixel MSE, it overlooks any image features critical for human
perception.

In this paper, we propose a new method for CT image
denoising by designing a perceptive deep CNN that relies
on a perceptual loss as the objective function. During our
research, it was drawn to our attention that minimizing MSE
between the denoised CT image and the ground truth leads
to the loss of important details, although the peak signal to
noise ratio (PSNR) based evaluation numbers are excellent.
That is because PSNR is equivalent to the per-pixel Euclidean
intensity difference. Therefore, a model maximizing PSNR
after successful training always achieves very high PSNR
values. However, the perceptual evaluation of the denoised
images generated by such a model is not necessarily better
than that of the original noisy images from experts’ point of
view.

In our proposed method, instead of directly computing MSE
summarizing pixel-to-pixel intensity differences, we compare
the denoised output against the ground truth in another high-
dimensional feature space, achieving denoising and keeping
critical structures at the same time. We introduce a new
perceptual similarity as the objective function of the CNN for
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Fig. 1: Proposed network structure.

CT image denoising. The rationale behind our work is two-
fold. First, when human compares two images, the perception
is not performed pixel-by-pixel. Human vision actually ex-
tracts features from images and compare them [10]. Therefore,
instead of using pixel-wise MSE, we employ another pre-
trained deep CNN (the famous VGG) for feature extraction
and compare the denoised output against the ground truth in
terms of the extracted features. Second, from a mathematical
point of view, CT images are not uniformly distributed in a
high-dimensional Euclidean space. They reside more likely
in some low-dimensional manifold. With MSE, we are not
measuring the intrinsic similarity between the images, but
just their superficial differences, i.e., the Euclidean distance.
However, by comparing images using extracted features, we
actually project the them onto a manifold and calculate the
geodesic distance therein. By measuring the intrinsic similarity
between images, our proposed approach can produce results
with not only lower noise but also sharper details.

The rest of this paper is organized as follows. The details of
our proposed method are given in Section II. The performed
experiments and discussions are presented in Section III.
Finally, Section IV draws conclusions and discusses our future
work.

II. METHOD

In this section, we first present the loss functions that we use
for measuring the image reconstruction error. The proposed
denoising deep network is then described.

A. Loss Functions

Our proposed method defines the objective loss function of
the denoising CNN using feature descriptors. Let {φi(I)|i =
1, . . . , N} denote N different feature maps of an image I .
Each map has the size of h × w × d, where h, w and
d denote height, width and depth, respectively. The feature
reconstruction loss can then be defined as

Lφi
(Î , Igt) =

1

hwd
‖φi(Î)− φi(Igt)‖2, (1)

where Î and Igt are the denoised image and corresponding
ground truth, respectively. In our work, the well-known pre-
trained VGG network [11] has been used for feature extraction.

Although VGG was originally trained for natural image classi-
fication, technical analysis shows that many feature descriptors
learned by VGG are quite meaningful for human [12], which
suggests that it also learns general perceptual features not
specific to any particular kind of images.

B. Network Architecture

Our developed network consists of two parts, the CNN
denoising network and the perceptual loss calculator, as shown
in Fig. 1. To learn denoising images containing different
structures and intensities, a deep enough network is required
to handle the sophistication. In our work, the CNN denoising
network was constructed by 8 convolutional layers. Following
the common practice in the deep learning community [13],
small 3 × 3 kernels were used in each convolutional layer.
Due to the stacking structure, such a network can cover a large
enough receptive field efficiently. Each of the first 7 hidden
layers of the denoising network had 32 filters. The last layer
generates only one feature map with a single 3×3 filter, which
is also the output of our denoising network. We used Rectified
Linear Unit (ReLU) as the non-linear activation function for
the 7 hidden layers.

The second part of the network is the perceptual loss
calculator, which is realized by using the pre-trained VGG
network [11]. A denoised output image Î from the first part
and the ground truth image Igt are fed into the pre-trained
VGG network for feature extraction. Then, the objective loss
is computed using the extracted features from a specified layer
according to Eqn. (1). The reconstruction error is then back-
propagated to update the weights of the CNN network only,
while keeping the VGG parameters intact.

The VGG network has 16 convolutional layers, each fol-
lowed by a ReLU layer and 4 pooling layers. In our experi-
ment, we tested the feature maps generated at the first ReLU
layer before the first pooling layer, named relu1 1, and the
first and fourth ReLU layers before the third pooling layer,
named relu3 1 and relu3 4, respectively. The corresponding
networks are referred to as CNN-VGG11, CNN-VGG31, and
CNN-VGG34 respectively.
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TABLE I: PSNR and SSIM of the denoised images.

FBP30NI CNN-MSE CNN-VGG11 CNN-VGG31 CNN-VGG34 BM3D
PSNR 27.1544 31.1135 31.1239 30.6462 30.2154 28.7405
SSIM 0.8018 0.9351 0.9348 0.9260 0.9159 0.9026

Fig. 2: Image denoising example with (a) the ground truth of VEO10NI, (b) the input FBP30NI image, (c) VEO30NI, and
restored results from (d) CNN-MSE, (e) CNN-VGG11, (f) CNN-VGG31, (g) CNN-VGG34, (h) BM3D. The display window
is [-160, 240]HU.

III. EXPERIMENTS

A. Materials and Network Training

In our work, we trained all the networks on a NVIDIA
GTX980 GPU using random samples from the cadaver CT
image dataset collected at Massachusetts General Hospital
(MGH) [14]. These cadavers were repeatedly scanned under a
GE Discovery 750 HD scanner at different noise levels, with
the noise index (NI) values of 10, 20, 30, and 40 respectively.
In addition, the projection data were used for CT image
reconstruction with two different methods. While one is the
classic filtered back-projection (FBP) method, the other is
a model-based fully iterative reconstruction (MBIR) vendor-
specific technique named VEO (GE Healthcare, Waukesha,
WI). The MBIR technique has a strong capability of noise
suppressing, but the traditional FBP method does not. In our
experiment, we used FBP reconstruction from 30NI dataset
(high noise level) as the network input and the corresponding
VEO reconstruction from 10NI dataset (low noise level) as the
ground truth images.

The proposed network was implemented and trained using
the Caffe toolbox [15]. At the training phrase, we randomly
extracted and selected 100,000 image patches of size 32× 32
from 2,600 CT images. We first trained a CNN with the same
structure as shown in Fig. 1 but using the mean-square-error

(MSE) loss, which is named CNN-MSE. The network was
trained for 1,920 epochs. Then, the CNN-MSE weights were
used to initialize the CNN-VGG11, CNN-VGG31, and CNN-
VGG34 networks. In our experiments, we noticed that the new
networks can be trained very quickly. In some cases, only 10
epochs were enough to obtain good results, and further training
did not help much.

B. Experimental Results

At the validation stage, whole CT images were used as
input. We tested the networks using 500 images from two
cadavers’ whole body scan. For comparison, we also tested the
classic BM3D method [16] and the recent work on SRCNN
[7], [6] named as CNN-MSE.

Figs. 2 and 4 show two examples of the denoised images.
To make the differences clearer, ROIs indicated in the red
rectangular areas in those figures are zoomed and shown in
Figs. 3 and 5, respectively. From these images, it is seen that
the images recovered by CNN-MSE and CNN-VGG11 got
over-smoothed with some details missing. On the contrary,
CNN-VGG31 and CNN-VGG34 yielded images of better
contrast and more similar to the VEO images. As for BM3D,
it gave different visual effects on different images. In Fig. 3(h),
the nodule pointed by the red arrow was smoothed out, while
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Fig. 3: Zoomed ROI marked in Fig. 2. (a) VEO10NI, (b) FBP30NI, (c) VEO30NI, (d) CNN-MSE, (e) CNN-VGG11, (f)
CNN-VGG31, (g) CNN-VGG34, (h) BM3D

the streak artifacts were reserved in Fig. 5(h). This can be
explained by the non-uniformity of image noise. In addition,
although the low contrast lesions (pointed by red arrow in
Figs. 3 and 5) can be seen in the FBP30NI and VEO30NI
images, the blocky and pixelated effects in image appearance
make them unacceptable for diagnostic use. The denoised
images by CNN-VGG31 provide the best delineation of lesions
relative to the ground truth of VEO10NI, while improving
overall image appearance, which may greatly improve the
diagnostic confidence.

The traditional metrics of PSNR and SSIM were also used
for evaluation as shown in Table I. PSNR is equivalent to
the per-pixel loss. As measured by PSNR, a model trained to
minimize per-pixel loss should always outperform a model
trained to minimize feature reconstruction loss. Thus, it is
not surprising that CNN-MSE achieves higher PSNR and
SSIM than CNN-VGG31 and CNN-VGG34. However, these
quantitative values are close, and the results of CNN-VGG31
and CNN-VGG34 are visually much more appealing. Overall,
these two networks are better than CNN-MSE and CNN-
VGG11.

In our experiments, we tested three feature maps of the
VGG network. Generally speaking, lower-level layers of VGG
extract primitive features, while higher-level layers give more
sophisticated higher level features. This explains why CNN-
VGG11 has a similar visual effect as CNN-MSE while CNN-
VGG31 and CNN-VGG34 preserve more details.

As for the computational cost, it took about 16 hours
to train the CNN-MSE network and 10 minutes to fine-

tune the CNN-VGG networks on a GTX980 GPU. After the
networks were trained, restoring a single image took less than
5 seconds. Thus, compared with the typical time of CT image
reconstruction, computational cost would never be a problem
for image denoising using deep neural networks in clinical
applications.

IV. CONCLUSIONS

In this work, we have proposed a convolutional neural
network for CT image denoising with a perceptual loss
measure, which is defined as the MSE between the feature
maps of the CNN output and the ground truth respectively.
The experimental results show that the proposed network
increases the images’ PSNR and SSIM and that the perceptual
regularization helps prevent image from over-smoothing and
losing structure details. In our future work, we will refine,
validate, and optimize our perceptive CNN with a larger
dataset. More importantly, we will perform a reader study
to compare the radiological reading reports with our deep
learning results.
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Fig. 5: Zoomed ROI in Fig. 4. (a) VEO10NI, (b) FBP30NI, (c) VEO30NI, (d) CNN-MSE, (e) CNN-VGG11, (f) CNN-VGG31,
(g) CNN-VGG34, (h) BM3D
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