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Abstract—Direct motion compensation in gated PET can
be achieved with maximum-likelihood (ML) joint activity re-
construction/motion estimation (JRM). Whereas the motion-
compensated (MC) activity image can be efficiently updated
with ordered subsets (OS) expectation maximisation (EM), the
motion optimisation suffers from high computational cost due
to the utilisation of line-search algorithms, which require to
perform projections/backprojections each time the likelihood and
its gradient are evaluated. The idea of this work is to use
OS to speed-up the estimation of the motion parameters, by
maximising each sub-likelihood sequentially. We show that the
utilisation of OS significantly reduces the overall joint-estimation
computational cost with negligible effect on the final solution.

Index Terms—Motion-compensated PET reconstruction, or-
dered subsets, maximum-likelihood, direct motion estimation.

I. INTRODUCTION

Direct (or data-driven) motion compensation methods in
gated PET can be achieved by maximum-likelihood (ML) joint
activity reconstruction/motion estimation (JRM) methods [1]–
[5]. They differ from indirect motion compensation methods
which rely on a pre-estimation of the motion fields, either
by registration of individually reconstructed PET gates [6] or
by using another imaging modality capable of measuring the
motion [7], [8]. While they are relatively easy to implement,
the former indirect approach suffers from noise due to the
limited number of counts at each gate and the absence of
accurate attenuation correction, while the latter requires addi-
tional costly equipment. In addition, it has been demonstrated
that direct approaches achieve better bias/noise trade-off as
compared to indirect approaches [3], [5], and only a single
attenuation map, deformed alongside the activity image, is
needed.

The drawback of direct approaches is their computational
cost. Maximisation of the likelihood with respect to the motion
needs to be performed in the sinogram domain. When a line-
search optimisation approach is used [3], [5], the deformed
volumes need to be projected each time the objective function
is evaluated. This computational burden can be avoided by
using surrogate functions, which allow one to transfer the
optimisation problem into the image space without altering
the monotonic properties [2], [4]. However, the usual surrogate
functions cannot be applied when accounting for deformable
attenuation.
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In this paper we propose to utilise the same strategy that
was adopted to accelerate ML expectation maximisation (EM)
image reconstruction [9], [10] by the utilisation of ordered
subsets (OS) [11]. We update the motion with a quasi-Newton
line search using one subset of the data only, and sequentially
iterate over the subsets. A summary of the model we utilised in
[5] and its OS version for motion estimation are presented in
section II, and an acceleration evaluation based on the number
of projections/backprojections used is presented in Section III.

II. METHOD

A. Joint Activity Reconstruction/Motion Estimation

In this section we briefly summarise the model used in [5].
The observed PET data are regrouped into ng motion-free PET
gates g1, . . . , gng

, each g` being a realisation of a Poisson
random vector with independent entries. The expectation of
this Poisson variable is determined by the activity distribution
image vector f and the motion parameter α` at gate ` ∈
{1, . . . , ng} as

ḡ`(f ,α`,µ) , τ`H(α`,µ)f + r` ,

where r` is the expected background event vector (random and
scatter) and τ` is the duration of gate `. Respiratory gating can
be achieved using external hardware [12] or data-driven meth-
ods [13], [14]. The motion-compensated attenuation-corrected
PET system matrixH(α`,µ) is given by the deformation field
defined by the parameter α` and the attenuation map µ as

H(α`,µ) , diag
{

e−RW (α`)µ
}
PW (α`) , (1)

where P is the “motion-free” PET system matrix, R is a
line-integral operator that computes the attenuation coefficients
for each bin pair, and W (α`) is the image warping matrix
associated to the motion field defined by α` [5]. The choice of
the motion model parameterisation depends on the application.
For example in [5] we used a B-spline non-rigid model for
respiratory motion wheareas in [15] we used a rigid model
for head motion. Note that in the projection model (1) the
attenuation µ is affected by the same motion W (α`) as f .

Denoting ϑ = {α`}
ng

`=1, the log-likelihood takes the form
of a sum over the gates ` ∈ {1, . . . , ng} and the detector bins
i ∈ I:

Φ(f ,ϑ,µ) ,
ng∑
`=1

∑
i∈I

Λ(gi,` | ḡi,`(f ,α`,µ)) , (2)

Λ(x | y) , x log y − y
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with gi,` , [g`]i and ḡi,` , [ḡ`]i. Joint activity recon-
struction/motion estimation (JRM) by maximum-likelihood is
achieved by maximising Φ with respect to f and ϑ:

(f̂ , ϑ̂) = arg max
f≥0,ϑ

Φ(f ,ϑ,µ) . (3)

In [5], (3) was achieved by alternating maximisation in f and
ϑ. While we used motion-compensated (MC) ML-EM steps
for f , we used a limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) quasi-Newton line-search [16] for ϑ.

The reconstructed activity images at each gate are

f̂` = W (α̂`)f̂ , ` = 1, . . . , ng (4)

and are considered as the final output of the method.

B. Ordered Subsets for Image and Motion Update
A MC-OS-EM update of f consists of updating each

activity values fj , [f ]j simultaneously using data from
successive disjoint bin subsets Sn, with ∪nSn = I,

f̂nj =
f̂n−1j

pn,j(ϑ,µ)

ng∑
`=1

∑
i∈Sn

gi,`

ḡi,`(f̂n−1,α`,µ)
(5)

where pn,j(ϑ,µ) =
∑

i∈Sn
∑ng

`=1 τ`[H(α`,µ)]i,j , which
is less computationally expensive than a standard ML-EM
update. It is worth noting that performing (5) is a maximisation
step of the partial log-likelihood

φn(f ,ϑ,µ) ,
∑
i∈Sn

ng∑
`=1

Λ(gi,` | ḡi,`(f ,α`,µ)) ,

and a “pseudo-maximiser” in f of the complete log-likelihood
Φ(f ,ϑ,µ) =

∑
n φn(f ,ϑ,µ) is obtained by circularly iter-

ating over n.
The main idea of this paper is to use a similar approach for

the estimation of the motion parameters α, i.e. by performing
successive maximisations of the partial log-likelihoods φn

ϑ̂n = arg max
ϑ

φn(f ,ϑ,µ) (6)

with an L-BFGS quasi-Newton line-search initialised from
ϑ̂n−1. Thus, (6) is the analog of the OS-EM step (5) for ϑ.
Note that as for OS-EM, this approach theoretically does not
converge to a maximiser of Φ because of the inconsistencies
between subsets due to the noise. For this reason, it would be
desirable not to use too many L-BFGS iterations per subset
as a maximiser of φn does not necessarily maximise φn+1.
However, this might have limited impact in practice, especially
during the early iterations.

The overall methodology is summarised in Algorithm 1.
ϑ and f are initialised with 0 and 1 respectively. For
each sub-routine, the variables on the right of the semi-
colon correspond to the initialisations. For example, ϑn ←
L-BFGS(φn(f , ·,µ);ϑn−1) is an L-BFGS maximisation of
ϑ 7→ φn(f ,ϑ,µ) initialised from ϑn. Prior to the main
loop, a first reconstruction of f is achieved with an ML-EM
reconstruction from a single gate g`0 , which is usually chosen
so that it is roughly aligned with the input attenuation map µ.
Note that we demonstrated in [5], [17] that µ does not need
to be aligned with any gates `, but convergence will be faster
with proper initialisation.

Algorithm 1: Ordered subsets joint PET maximum-
likelihood motion estimation/image reconstruction

Input: Gated PET data {g`}
ng

`=1, attenuation map µ,
number of subsets Nsub

Output: PET image f , motion parameter ϑ
initialisation ;
ϑ← 0 ;
f ← 1 ;
f ← ML-EM(g`0 ,µ;f) ;
for k = 1, . . . ,#outer iterations do

ϑ0 ← ϑ ;
for n = 1, . . . , Nsub do

ϑn ← L-BFGS(φn(f , ·,µ);ϑn−1);
end
ϑ← ϑNsub ;
f ← MC-OS-EM

(
(g`)

ng

`=1,ϑ,µ;f
)

;
end

III. VALIDATION

A. Data Generation

We generated ng = 3 XCAT activity and attenuation
volumes (133 × 133 × 42, 3.125 mm edge cubic voxels)
{f`}3`=1 and {µ`}3`=1 (Figures 1(a) and 2(a)), at 3 different
stages of the respiratory cycle. Gated PET data were simulated
as

g` ∼ Poisson
(
τ`diag

{
e−Rµ`

}
Pf` + r`

)
.

The same duration τ` was used for each gate. The total number
of counts was 3× 107, including background r` (30% of the
total counts). The same projector was used for P and R and
included a 5 mm FWHM resolution model.

B. Projections/Backprojections vs Log-Likelihood

1) Reconstructions: We proceeded with 2 JRM reconstruc-
tions: standard JRM (noOS-JRM) as described in [5], and JRM
with OS for motion estimation (OS-JRM), using Nsub = 15
subsets. We used µ = µ1 (the XCAT attenuation volume
corresponding to the first gate) for attenuation correction, and
gate `0 = 1 was used to obtain a first ML estimate of f .
The B-splines motion model used was the same as in [5], and
ϑ = {α`}

ng

`=1 corresponds to the B-spline coefficients.
The estimated activity images and motion parameters are

denoted

f̂noOS, ϑ̂noOS = {α̂noOS
` }ng

`=1, f̂OS, ϑ̂OS = {α̂OS
` }

ng

`=1 .

The reconstructed activities at each gate are defined following
(4):

f̂noOS
` = W (α̂noOS

` )f̂noOS, f̂OS
` = W (α̂OS

` )f̂OS ,

and the corresponding warped attenuation maps are:

µ̂noOS
` = W (α̂noOS

` )µ, µ̂OS
` = W (α̂OS

` )µ .

Note that for both approaches we used OS-EM to update f
(15 subsets as well, 1 iteration per subset), but OS motion
updates were used for OS-JRM only. 10 L-BFGS motion inner
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(a) (b) (c)

Fig. 1: Activity images at each gates: (a) f` (XCAT phantoms); (b) f̂noOS
` ;

(c) f̂OS
` .

(a) (b) (c)

Fig. 2: Attenuation images at each gates: (a) µ` (XCAT phantoms); (b)
µ̂noOS

` ; (c) µ̂OS
` .

iterations were used for OS-JRM and noOS-JRM, and 3 outer
iterations were used for both. We also added a small quadratic
penalty on ϑ, as we previously did in [5].

Figures 1(b) and 1(c) show the reconstructed gates
{f̂noOS

` }ng

`=1 and {f̂OS
` }

ng

`=1. Both look similar to the XCAT
phantoms {f̂noOS

` }ng

`=1 and {f`}
ng

`=1 used to generate data
(Figure 1(a)). This result suggests that using OS to esti-
mate motion in JRM does not affect the joint estimation of
(f ,ϑ). Similarly, the warped attenuation maps {µ̂noOS

` }ng

`=1

and {µ̂OS
` }

ng

`=1 appear similar to {µ`}
ng

`=1 (Figure 2(a)).

2) Results: To assess the estimation speed-up, we looked
at the log-likelihood values Φ (2) as a function of the number
of projections/backprojections (P&B) at each inner iteration
of Algorithm 1 (L-BFGS and MC-OS-EM). When a subset is
used, the number of P&B was incremented by 1/Nsub. Since
the computational cost is mostly explained by the number of
P&B, it provides an accurate indicator of the computational
time. The image f was initialised

Figure 3 shows the log-likelihood values versus the number
of P&B for both noOS-JRM and OS-JRM. The first plot cor-
responds to the Φ-value following the first L-BFGS iteration
(after the initial ML-EM initialisation using gate ` = 1). These
curves show that JRM speed is significantly increased when
OS are used for motion estimation, in a similar fashion as OS-
EM accelerates EM. The sudden increase of the Φ-values at 90
P&B for OS-JRM and 170 P&B for noOS-JRM corresponds to
the beginning of the first MC-OS-EM update of f , following
the first estimation of ϑ. Note that the OS-JRM plot oscillates
slightly . This is due to the fact that the motion estimation
switches between subsets that are not consistent due to the
noise, which does not guarantee an increase of Φ at each
iteration.
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Fig. 3: Number of P&B vs the log-likelihood for noOS-JRM and OS-JRM.

C. Projections/Backprojections vs “Image Registration Error”

The estimation of ϑ can be seen as a registration task at
each gate, except that the target image is observed in the sino-
gram space only. Therefore investigating the difference image
W (α̂)f source−f target at different stages of the estimation of
α is useful to illustrate the acceleration.

Here we used f target = f3 (gate ` = 3) as the target image,
from which the projection gtarget = g3 was generated. The
input image f source was set to f1 (gate ` = 1, corresponding
to the input attenuation map µ = µ1), and we proceeded with
the maximisation of the log-likelihood function

α 7−→
∑
i∈I

Λ(ḡtargeti | ḡi,3(f source,α,µ))

with both noOS-L-BFGS (60 iterations) and OS-L-BFGS (15
iterations per subset). We also used Nsub = 15. Note that
since the activity image f source is known, there is no need for
a reconstruction step and therefore there is no outer loop.

The relative difference images are shown in Figure 4, and
the normalised squared error, defined as

NSE(W (α̂)f source,f target) =
‖W (α̂)f source − f target‖22

‖f target‖22
,

(7)
is displayed in Figure 5. While it takes about 200 P&B to
achieve a good match with noOS-L-BFGS, a similar result can
be achieved with less than 30 P&B when using OS-L-BFGS.
This observation is consistent with the results displayed in
Figure 3.

IV. DISCUSSION

Utilising OS for motion estimation has an effect that is
comparable to utilising OS for EM image reconstruction, as
limiting the number of bins for a motion parameter update
reduces the computational burden. Similarly to OS-EM, this
approach does not converge to a maximum, as the update
obtained from the maximisation of a sub-likelihood φn does
not maximise the other sub-likelihoods. In principle, each
subset should be used to maximise the information and reduce
the variance and the accuracy of motion estimation, but less
subsets may be used for more acceleration. Further work to
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(a) noOS, 16 P&B (b) OS, 1.4 P&B

(c) noOS, 52 P&B (d) OS, 5.1 P&B

(e) noOS, 100 P&B (f) OS, 12.8 P&B

(g) noOS, 200 P&B (h) OS, 26.3 P&B

Fig. 4: Relative difference W (α̂)f source − f target with nonOS-L-BFGS
and OS-L-BFGS at different stages of the optimisation.
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Fig. 5: Number of P&B vs the normalised squared error (NSE) for noOS-L-
BFGS and OS-L-BFGS, as defined in (7).

assess the number of subsets for optimal performance should
be conducted.

Despite the absence of convergence, the speed boost pro-
vided by OS is significant and can be very useful, especially in
situations where the computational cost is high such as in time-
of-flight (TOF) PET JRM [17], or where the input attenuation
is misaligned with all the PET gates, which requires a large
number of iterations [5], [17].

V. CONCLUSION

We introduced an OS approach for direct motion estimation
in gated PET, inspired from OS-EM. This new approach
provides significant acceleration as compared to the conven-
tional approach proposed in previous work [5]. Further work
includes: (i) evaluation of the variance and computational
costs for different subset sizes and L-BGFS iterations; (ii)
application of OS-JRM on TOF-PET/CT patient data; (iii)
evaluation of the acceleration with misaligned attenuation
map/PET gates.
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