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Abstract—The measurements of lesion standardized uptake
value (SUV) in clinical PET studies are affected in a complicated
way on many aspects of the data, including—but not limited to—
count level, lesion size, lesion shape, lesion location, background
level and structure, and patient size. In addition, the SUVs
are also affected by the reconstruction algorithms and their
parameters, e.g., number of iterations, parameters of point
spread function (PSF) model, post-filtering and regularization
parameters for penalized-likelihood reconstructions. Optimized
reconstruction algorithms and their parameters can provide
substantial improvements in quantification in PET imaging.
We would like to study the response of a particular lesion at
a particular location, which will be used as a criterion for
optimizing the reconstruction parameters. In this study, we use an
embedded point source to determine the local impulse response
(LIR) at the location of the lesion, and thus characterize the local
properties and responses of an imaging system. The determined
LIR can then be used by an automatic expert system to determine
the optimal parameters for better quantifying a particular lesion
in a particular patient. The list-mode point source data can be
experimentally acquired from a physical point source using the
same PET scanner as was used for the patient data. Data from
a point source can then be embedded by merging point source
list-mode data into the patient data. To reduce the variability, we
fit the estimated LIR using a 3D Gaussian model. The fitted LIR
can be convolved with the estimated lesion shape to calculate the
lesion bias for a particular lesion in a region of interest (ROI). As
an initial study, we convolve known lesions of different sizes with
the fitted LIR, and the recovery coefficients (RCs) are computed
and compared with the RCs obtained using standard method.

Index Terms—Local impulse response (LIR), embedded point
source, expert system, blob, image reconstruction, positron emis-
sion tomography (PET).

I. INTRODUCTION

PET imaging combined with CT or MR has been in-
creasingly used to assist cancer diagnosis, stage patient

diseases, and drive patient therapy. PET is also an important
tool for radio-labelled molecular imaging. Image reconstruc-
tion methods have a key role in converting the measured
data into meaningful and diagnostically useful images. Many
iterative reconstruction algorithms have been developed, but
the algorithm that gives the most reliable quantification, e.g.,
standardized uptake value (SUV), depends in a complicated
way on many aspects of the data, including—but not limited
to—count level, lesion size, lesion shape, lesion location,
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background level and structure (e.g., a lesion near the bladder
versus the liver), and patient size. In addition, measurements
of the SUV in clinical PET studies are also impacted by
the choice of reconstruction algorithms and their parameters,
e.g., number of iterations, parameters of point spread function
(PSF) model, post-filtering and regularization parameters for
penalized-likelihood reconstructions. Incorporating resolution
modeling in iterative reconstruction improves the accuracy of
the estimated SUV; however, it can also increase the variability
of the SUV estimations. Optimized reconstruction algorithms
and their parameters can provide substantial improvements in
reconstruction quantification in PET imaging. The optimiza-
tions of these parameters can be complicated and tedious,
and we propose an automatic expert system to determine the
optimized parameters for quantifying a particular lesion in
a particular patient by fully understanding the reconstruction
properties and responses.

II. MATERIALS AND METHODS

A. Iterative Local Impulse Response
For an idealized tomography system, one can use the point

spread function (PSF) to fully characterize the system [1].
However, for real imaging systems, the system response is spa-
tially variant, object-dependent, and nonlinear, which makes
the system property study cumbersome. We would like to
study a particular lesion response at a particular location. The
local impulse response (LIR) is a useful tool for investigating
the local response properties of an imaging system and the
reconstruction algorithm used to reconstruct the images [2]–
[5]. The local impulse response is defined in terms of the
mean reconstruction µ(k)(f) of object f and is the limiting
difference between the reconstructions of an object and its
perturbation with a point source, µ(k)(f + δej). The local
impulse response (LIR) of j-th pixel at iteration k is defined
as [3]

l
(k)
j (f) = lim

δ→0

µ(k)(f + δej)− µ(k)(f)

δ
=

∂

∂fj
µ(k)(f). (1)

In the context of emission tomography, it was observed that
LIR is approximately locally invariant [5]–[8]. For a small
lesion, one LIR located near the center of the lesion can be
used; one can always use multiple LIRs for a relatively large
lesion for better quantification.

B. Embedded Point Source in List-Mode Data
To estimate LIR, an addition reconstruction with an inserted

point source is required. It is infeasible to insert a radioactive
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source into patients. Here we use data from a point source,
which are synthetically embedded into the patient’s list-mode
data. Synthetically embedding technique provides a method for
adding the data with a lesion of known size, shape, location,
and activity concentration into an existing patient data set [9]–
[12]. This has the strong advantage of phantom studies: known
truth and all physical effects inherently included because of its
experimental acquisition; it also has the advantage of clinical
relevance since each patient’s data will be used, inherently
mimicking the circumstances for a particular lesion.

Instead of embedding an artificial lesion of similar size,
we synthetically embed data from a point source measured in
air at a location near the lesion. This will give us two data
sets: with and without the embedded point source. We then
reconstruct both sets and take the difference to estimate the
local impulse response (LIR) in image space. The list-mode
data of a point source can be experimentally acquired from a
physical point source using the same PET scanner as acquiring
the patient data. List-mode events from the point source are
merged into the patient’s list-mode data. To compensate for
attenuation by the patient, the point source list-mode data are
reduced prior to merging by randomly rejecting events based
on the probability of attenuation along each event’s line of
response.

C. 3D Gaussian Fitting

Due to the counts limited nature of PET (or SPECT) images,
the estimated local impulse response (LIR) can be noisy for
the low counts cases. We use a 3D Gaussian model to fit the
estimated LIR along the radial, tangential and axial directions.
Specifically, the 3D Gaussian model is

PSF(x;µ,Σ)

= C
1

(2π)
3/2|Σ|1/2

exp

[
−1

2
(x′ − µ)TΣ−1(x′ − µ)

]
,

µ = (µr, µt, µξ)
T
, Σ = diag

(
σ2
r , σ

2
t , σ

2
ξ

)
. (2)

Here, C is a constant, x′ = (r, t, ξ)
T is the LIR coordinates

respectively along radial, tangential and axial directions, which
can be obtained by rotating the image space coordinates x.
For an LIR with a complex shape, e.g., the LIR of an limited-
angle imaging system, a Gaussian mixture model (e.g., two
3D Gaussians) can be used to fit the LIR [13]. We use a
nonlinear least-squares method to fit the seven parameters of
a 3D gaussian.

To characterize the spatial resolution of an LIR, we use a 3D
full width at half maximum (FWHM) metric. The 3D FWHM
is the geometric mean of the FWHMs along radial, tangential
and radial directions (the diameter of an equivalent sphere):

FWHM3D =
√
log 256× (σrσtσξ)

1/3
. (3)

D. Simulation Setup and Digital Phantom

We used EGS4 to generate list-mode data for a generic
whole-body PET scanner with time-of-flight (TOF) informa-
tion [14], [15]. As shown in Fig. 1, a cylindrical phantom
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Fig. 1. The digital phantom of 35 cm diameter is used in the simulation. This
phantom contains two 22mm spheres with 3:1 activity ratio with respect to
the average background uptake.

of 35 cm diameter containing a 10 cm diameter cold cylin-
der with lung-like attenuation (linear attenuation coefficient
0.32 cm−1) was used in the simulations. Two spheres with
22mm diameters were embedded in the phantom with a
3:1 activity ratio with respect to the warm background, one
offset from the center of the lung cylinder and the other in
the warm background. Trues-only data with TOF resolution
of 300 ps were simulated; randoms and scatter were not
considered in this study. The data were reconstructed using
the list-mode TOF ordered subsets expectation maximization
(OSEM) algorithm with 25 subsets and 10 iterations. Blob-
based reconstructions with Kaiser-Bessel basis functions were
used. The blob images were reconstructed on a body-centered
cubic (BCC) grid with step size of 6mm; and the the blob
images were then converted to voxel images with voxel size
of 2mm with no post-filtering. This algorithm and parameters
closely replicates what is used clinically for whole-body PET
studies at our institution. We used a shifted body centered
cubic (BCC) grid that allows the point source be sampled by
one sampling point of the BCC grid (i.e., centered on a single
blob).

We simulated 100 independent realizations of the phantoms,
each with 1× 107 true events. We performed reconstructions
with 10 different independent realizations as the starting
dataset in order to determine the variability.

III. RESULTS

A. The Estimated Local Impulse Response

Typical reconstructed images with and without the embed-
ded point source are shown in Fig. 2. The embedded source
is located in the center of the sphere at 6 cm along x axis
in the warm background. An embedded point source with
total counts of 1k was embedded in the list-mode data of the
phantom for this noisy reconstruction.

By taking the difference of the two reconstructed images
with and with the embedded point source, we obtain the
local impulse response (LIR) as shown in Fig. 3(a). We then
fitted the estimated LIR with the 3D Gaussian model (2). The
profiles along radial, tangential, and axial directions, as well
as the 3D Gaussian fitted curves, are shown in Fig. 3(b).
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(a) Without point source (b) With point source

Fig. 2. Comparison of noisy reconstructions with and without embedded point
source. The phantom is 35 cm in diameter, and the point source is shift 6 cm
along x axis.
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(b) Profiles and 3D Gaussian fitting

Fig. 3. The 3D LIR is determined by taking the difference of the recon-
structions with and with the embedded point source. The detected count of
the embedded point source was 2k in this estimated LIR. The maker (◦)
indicates the measured LIR and the curve is the 3D Gaussian fitting.

B. Impact of Counts of the Embedded Point Source

The amount of activity from the embedded point source
should be as small as possible since iterative reconstructions
are object-dependent and nonlinear. However, using a small
number of detected point source events can produce a very
noisy LIR. We investigated the impact of the detected counts
of the embedded point source on the estimation of LIR. We
merged list-mode data with different number of counts for the
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(b) Point source in warm background

Fig. 4. Calculated 3D FWHM versus number of detected counts from the
embedded point source. The error bas shows the standard deviation of 10
estimated LIRs.

point sources at two locations: lung and warm background;
the numbers of detected events from the point source after
phantom attenuation are: 500, 1k, 2k, 5k, 10k, 50k, 100k.
There were 10 noise realizations for each count level of the
point source for each location. We fitted the 10 estimated
LIRs with a Gaussian model and calculated the 3D FWHM.
Fig. 4 shows the calculated 3D FWHM versus the numbers of
detected counts in the embedded point source. The error bar
shows the standard deviation of the 10 estimated LIRs. From
the figure, we see high counts of the point source can affect
the reconstruction and 3D FWHM estimation; low counts can
produce LIR with large variance. The 1k or 2k counts can be
good choices for the LIR estimation. The number of count is
1k in the image shown in Fig. 2(b).

C. The Estimated Recovery Coefficients

The LIR can be useful to characterize the local properties
and responses of a reconstruction algorithm or an imaging
system. To demonstrate the usefulness, we convolved the fitted
LIR with ideal lesion spheres and then the recovery coefficient
(RC) were calculated inside the lesion spheres. Six sphere
diameters (10, 13, 17, 22, 28 and 37mm) were considered,
which span the range of lesion sizes typically encountered in
clinical PET imaging.
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Fig. 5. Calculated the recovery coefficients (RCs) for different sizes of lesions
in lung and in warm background.

Fig. 5 shows the calculated RCs for different sizes of
lesions in lung and in warm background using the 3D FWHM
estimated from 2k point source events. The solid symbols
show results measured in the same phantom for 10 and 22mm
diameter spheres; the error bars are the standard deviation over
100 independent noisy realizations. There is some difference
between the estimated RCs using the LIR method and the RCs
computed from noise realizations, but the difference is within
the uncertainty [15].

IV. DISCUSSION AND CONCLUSION

The local impulse response (LIR) can be very useful to
characterize the local properties and responses of an imaging
system for quantifying a particular lesion. The advantages
of the LIR methods is that it allows much more flexibility
compared to the method of inserting pre-acquired spheres
because the size and shape of the lesion are unlimited by this
method, whereas only a limited number of spherical lesions
can be acquired using the lesion inserting technique. Using
experimentally acquired point sources inherently takes all
physical effects into account. We have also investigated using
the bootstrapping method to estimate the variability of lesion
uptake for both the mean and maximum uptake [15]. Further
work will include the studies of using other systematic and
statistical methods to fully understand the intrinsic responses
and statistical properties of reconstruction algorithms.

We presented in this work that an local impulse response can
be estimated using an embedded point source. The embedded
point source was synthetically embedded into phantom list-
mode data. The local properties and responses of a reconstruc-
tion algorithm or an imaging system can be characterized by
the LIR. We have demonstrated that the recovery coefficient
of lesions with different sizes can be computed from the fitted
LIR, which can be useful for quantifying the lesion and bias
correction of the uptake values in patient studies.
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