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Abstract—Low computational efficiency is the 
largest obstacle hindering practical applications of 
Monte Carlo particle transport simulation. We 
develop a new MC scheme for photon transport 
that employs Metropolis-Hasting sampling 
algorithm to conduct the simulations via a 
path-by-path scheme in this GPU-based 
Metropolis MC (gMMC) package. By using the 
Metropolis algorithm, gMMC is able to sample an 
entire path of a photon each time, extending from 
the x-ray source to the detector. The sampled paths 
over a long run will follow a distribution governed 
by the particle transport physics. gMMC was 
benchmarked against an in-house developed 
GPU-based Monte Carol simulation tool gMCDRR 
that performs simulations in the conventional 
particle-by-particle scheme. An example problem 
of x-ray scatter calculation was studied. For pencil 
beam case, speed-up factors of 200 to 300 times for 
first order scatter and 12 to 18 times for second 
order scatter can be achieved, while the average 
differences comparing to the conventional 
approach are within 1%. 

Index Terms—Mento Carlo simulation, Metropolis 
Hasting sampling, path-by-path scheme, scattering 
calculation 

I. INTRODUCTION
Monte Carlo (MC) simulation is an 

important numerical algorithm to handle 
problems in medical physics that require particle 
transport simulations in a high degree of 
accuracy. However, the low efficiency is the 
largest obstacle hindering practical applications 
of this method. One example in this category is 
MC-based x-ray scatter signal calculation in
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cone beam CT (CBCT) [1]. Scatter signal in 
CBCT is known to be the main factor degrading 
image quality. While MC method has the 
potential to accurately perform scatter 
calculation and therefore facilitate scatter 
removal, this method is rarely used in routine 
clinic due to the extremely long computation 
time. 

Tremendous efforts have been devoted to 
accelerating the MC simulation process. On the 
algorithm side, variance reduction techniques 
have been introduced to improve the fast 
convergence. Efficiency enhancement methods 
have also been employed to improve 
computational speed at a cost of acceptable 
accuracy degradations. On the hardware side, 
novel computational platform has been 
employed. In addition to conventional CPU 
clusters, graphics processing unit (GPU) has also 
demonstrated its enormous capability to 
substantially boost the efficiency[2, 3]. The 
pursuit of continuous improvements of 
efficiency will probably never end. Higher and 
higher MC simulation speed will be desired by 
the ever increasing problem size and complexity 
in medical physics. Fast MC simulations will not 
only facilitate the translations of this novel 
method to clinical practice, it will also enable us 
to attack problems that were computationally 
prohibitive.   

At present, majority of existing MC 
simulation packages perform calculations via a 
particle-by-particle scheme[4, 5]. This scheme  
spends a lot of time on the transport of 
simulation of particles that do not necessarily hit 
the detector, yielding a very low computational 
efficiency. The desire of improving computation 
efficiency motivates us to develop a new MC 
scheme that employs Metropolis-Hasting 
sampling algorithm. In this method, the 
simulations are conducted via a path-by-path 
scheme in this GPU-base Metropolis MC 
(gMMC) package. We sample the entire particle 
transport path at once and use the Metropolis 
algorithm to manage the relative weights 
between them. This algorithm allows us to focus 
computations only on sampling those paths that 
deposits signals to the detector with a high 
probability. It is this fact that enables the 
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proposed method to achieve a much higher 
computational efficiency than the conventional 
approach. 

II. METHODS 

A. Metropolis-Hasting algorithm for gMMC 

The Metropolis-Hasting algorithm[6, 7] is a 
method to draw samples from any probability 
distribution ܲሺݔሻ. Specifically, a sequence of 
random samples ݔ௜  is generated through the 
algorithm described in TABLE I. In line 3, the 
term mutation refers to generating a new sample 
based on the current sample. The design of the 
mutation strategies can be very creative and 
flexible. With the mutation probability 
ܶሺݔ →  ሻ, the probability to accept this mutationݕ
in line 4 is expressed as: 

ݔ௔௖௖௘௣௧ሺ݌ → ሻݕ

ൌ min ቈ1,
ܲሺݕሻܶሺݕ → ሻݔ

ܲሺݔሻܶሺݔ → ሻݕ
቉													ሺ1ሻ 

Where		ܲሺݔሻ is the probability to be sampled 
from. Specifically, for the problem of scatter 
calculation in CBCT, the variable ݔ௜	in TABLE I 
refers to an entire photon path that starts from 
the x-ray source and ends on the detector. 

TABLE I. Metropolis-Hasting Algorithm. 

1 Initialize ݔ଴; 

2 For ݅	 ൌ 	1 to ܰ 

ݕ 3 ൌ mutationሺݔ௜ିଵ	ሻ; 

4 Compute ݌ ൌ ௜ିଵݔ௔௖௖௘௣௧ሺ݌ →  ;ሻݕ

௜ݔ 5 ൌ ݕ  with probability ݌ , and 
௜ݔ ൌ ௜ିଵ with probability 1ݔ െ  ;݌

6 End 

B. gMMC for photon transport simulation 

The basic idea of our MMC simulation is to 
sample an entire path of a particle extending 
from the x-ray source to the detector, as shown 
in Fig. 1. By using the Metropolis algorithm, the 
sampled paths over a long run follow a 
distribution governed by the particle transport 
physics. This approach is fundamentally 
different from sampling a particle at one 
scattering event each time and let it go freely 
following physics principles. The conventional 
approach has no control about where the particle 
ends, which wastes a lot of computations on 
tracking those particles that do not contribute to 
the signal of interest at the detector. 

C. Generate a new photon path 

 
Fig. 2. Illustration of a photon path. 

Let us assume a photon path starts from the 
x-ray source 	ܵ , goes through a number of 
interaction points	ܣ௜,	݅ ൌ 1,2, … , ܰ, and ends at a 
point ܤ on the detector. Here ܰ  is the total 
number of interactions for this path. We sample 
the source energy ܧ଴ uniformly in the possible 
energy range and sample number of interactions 
ܰ uniformly in the range of	ሾ0, ܰ௠௔௫ሿ, where 
ܰ௠௔௫ is the largest number of scattering order 
considered. The locations of these ܰ interaction 
points ܣ௜, ݅ ൌ 1,2, … , ܰ are sampled within the 
object. After photon enter the object, we 
uniformly sample the first interaction point 
forward direction of photon within object. Then 
random-walk algorithm[8] is utilized to sample 
the second and high order interaction point. The 
interaction point is generated based on the 
previous scatter angle which is regard as 
expectation of a Gaussian distribution. The 
distance between the two scattering-interaction 
is also sampled uniformly. At each interaction 
point, we consider two types of photon 
interactions, namely Compton scatter and 
Rayleigh scatter. Photoelectric interaction is not 
considered here, as it cannot occur for those 
paths that extend to the detector. Finally, the 
detector point ܤ is sampled uniformly on the 
detector. 

The entire photon trajectory consists of 
ܰ ൅ 1 segments. The probability density of this 
trajectory is hence the product of those for all 
segments, as well as those for all interaction 
points. Let us start with the first segment that 
connects the source ܵ  with the first scatter 
point ܣଵ at ݔଵ. Suppose the x-ray source emits 
photons with a directional probability density 
function ܨሺݔሻ, i.e. the probability density of 
emitting a photon to a unit solid angle towards a 
point ݔ . The probability density of having a 
photon with a certain interaction at point ݔଵ is 
׬ሾെ	ଵሻexpݔሺߤ ௟భݏሻdݏሺߤ

ሿ . Furthermore, the 
probability for the interaction type ଵܶ to occur 
at this point is ߤ భ்ሺݔଵሻ/ߤሺݔଵሻ . Multiplying 
these factors these together, the probability 
density of having a photon moving from the 
source S to a unit solid angle towards ݔଵ , 
experiencing an interaction ଵܶ at this point is 

ߤଵሻݔሺܨ భ்ሺݔଵሻexpሾെ׬ ௟భݏሻdݏሺߤ
ሿ. 

… 
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Fig. 1. Illustration of   photon transport simulation 
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Similarly, we can derive the probability for 
the second segment. The only difference is that 
the probability density for the photon moving 
from the scatter point ܣଵ  to the point ܣଶ  is 
governed by the scattered photon angular 
distribution ߩ భ்

ሺݔଵሻ  after an event ଵܶ . This 
probability density is simply the normalized 
differential cross section function. Note that the 
argument of this probability density function is 
actually the scatter angle defined by the event 
ܵ → ଵݔ → ଶݔ . However, we use ݔଵ  here to 
simplify notation. With this term, the probability 
density for a photon to move from the point ܣଵ 
to a unit solid angle towards the point ܣଶ , 
having an interaction ଶܶ  at this point is 
ߩ భ்

ሺݔଵሻߤ మ்ሺݔሻexp	ሾെ׬ ௟మݏሻdݏሺߤ
ሿ.

Generally speaking, the probability 
associated with the path ݈௜ for ݅ ൌ 2,3,… , ܰ is 

׬ሾെ	௜ሻexpݔ೔ሺ்ߤ௜ିଵሻݔ೔షభሺ்ߩ ௟೔ݏሻdݏሺߤ
ሿ. 

For the last segment that extends from the 
last scatter point ܣே  to the detector, we 
consider a small area dܣ on the detector plane. 
Denote the angle between the photon travel 
direction and the normal direction of the 
detector by ߙ. Then the probability of having 
the photon at the point ܣே scattered towards 
the area dܣ  on the detector is 
ேሻݔಿሺ்ߩ cos ߙ dܣ/݈ேାଵ

ଶ . Note that the factor 
dܣ cos ߙ  is the effective area that is 
perpendicular to the photon travel direction and 
cosߙ dܣ/݈ேାଵ

ଶ  is the solid angle of dܣ with 
respect to ܣே. Furthermore, the probability for 
the photon reaching the detector is 
exp	ሾെ׬ ௟ಿశభݏሻdݏሺߤ

ሿ. Here an ideal detector that 
captures all the photons is assumed. Thus, the 
probability of the last segment is 

׬ሾെ	ேሻexpݔಿሺ்ߩ ௟ಿశభݏሻdݏሺߤ
ሿ cos ߙ /݈ேାଵ

ଶ dܣ.     

Dividing this expression by the area measure 
dܣ yields the probability density for this last 
segment.  

With all the probability density defined, we 
can multiply all of them together to form the 
probability density of the entire path, yielding 
the expression used in our Metropolis algorithm 
ሻݔሺ݌ ൌ

∏ଵሻݔሺܨ ௜ሻݔ೔ሺ்ߩ௜ሻݔ೔ሺ்ߤ
ே
௜ୀଵ ∏ exp	ሾെ ׬ ݏሻdݏሺߤ

௟೔
ሿேାଵ

௜ୀଵ cos ߙ /

݈ேାଵ
ଶ                                    (2) 

We finally remark that this expression is 
also valid for a primary photon path that directly 
extents from the source to the detector. In the 
case of ܰ	 ൌ 	0 , which means no scattering 
event , one gets the probability density of 

ଵሻݔሺܨ
ୣ୶୮	ሾି׬ ఓሺ௦ሻୢ௦೗భ

ሿ

௟భ
మ cos .ߙ

D. Compute acceptance probability

Once a path is sampled, we first
sequentially go through the interaction points to 
determine the energy after each interaction ܧ௜, 
݅ ൌ 1,2, … , ܰ, which is needed to calculate the 
probability of the path. For Compton scatter, the 
photon energy is: 
௜ܧ ൌ /௜ିଵܧ ቂ1 ൅

ா೔షభ
௠೐௖మ

ሺ1 െ  ௜ሻቃ  (3)߮ݏ݋ܿ
where the item ݉௘ܿଶ is electron mass energy 
and ߮௜ is the scatter angle. For Rayleigh scatter, 
it is the elastic scatter event, which means 
௜ܧ ൌ  .௜ିଵܧ

With all the probability density defined, we 
can multiply all of them together to form the 
probability density of the entire path. As for the 
transition probability	ܶሺݔ →  ሻ, since the way ofݕ
generating a photon path ݕ  in the previous 
subsection is independent of the previous path	ݔ, 
ܶሺݔ →  as ݕ ሻ is only a function of the pathݕ
ܶሺݕሻ. 

E. Data acquisitions

We first demonstrate the performance of
our method in an Aluminum phantom, which is 
shown in Fig. 3 a), with a pencil beam of 60kVp 
normally hitting on it. The size of the phantom 
is	10	 ൈ 10 ൈ 2.8 ܿ݉ଷ. The x-ray source to the 
front surface of the phantom and the detector is 
14.19 cm and 65 cm, respectively. In the second 
case we studied, one inhomogeneous phantom 
illustrated in Fig.3 b) containing tissue and bone 
is also utilized. The size of this phantom 
is	12.8	 ൈ 12.8 ൈ 12.8 ܿ݉ଷ.  

Finally, in Fig. 3 c), a real head-and-neck 
cancer patient case is used. CT data is used to 
form the phantom. The size of phantom 
is	37.9	 ൈ 37.9 ൈ 12.5 ܿ݉ଷ. In all the cases, the 
results are compared with gMCDRR with pencil 
beam of 60kVp photon particles, where 
gMCDRR is a full MC simulation package that 
transport particles via the conventional 
particle-by-particle scheme. 

Fig. 3. Simulated phantoms in gMMC. 

III. RESULTS

A. homogeneous phantom case

In the homogeneous phantom case, the
computation time to transport 4.5 ൈ 10ଵଵ 
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photons is 45 hrs. for achieving the high quality 
of the simulated result with the average stand 
deviation below 0.05% in gMCDRR. For 
gMMC, the single Compton, single Rayleigh, 
and multiple scattering were recorded separately 
to reach the same uncertainty of gMCDRR result 
for comparison. In gMMC, the computation time 
of the first order scatter signal and second order 
scatter signal is 13 mins. for 5 ൈ 10ଽ	paths and 
3.78 hrs. for 	5 ൈ 10ଵ଴paths, respectively. So we 
can reach speed up factors of around 208 times 

and 12 times for first order and second order 
scatter signal. As shown in Fig4, the signals 
between gMMC and gMCDRR are matched well. 
Note that due to the capability of specifically 
sampling photons hitting the detector, the needed 
number of paths in gMMC to reach the same 
level of uncertainty as in gMCDRR, and 
therefore number of particles is much lower. The 
substantially reduced number of particles yield 
dramatically improved computational efficiency.

 
Fig. 4. (a)-(d) are the single Compton, single Rayleigh, second Compton and second Rayleigh scattering image from gMMC 
and (e)-(h) are that from gMCDRR. (i)~(l) are profiles on the yellow line in (a)~(h). 
 

B. Inhomogeneous phantom case 

For the inhomogeneous phantom case, the 
computation time is 30 hrs. after 4.5 ൈ 10ଵଵ 
photons simulated in gMCDRR. This is in sharp 
contrast to gMMC, in which the computation 
time of the first order scatter signal and second 
order scatter signal is 5.3 mins. for 5 ൈ

10ଵ଴	paths and 1.67 hrs. for 5 ൈ 10ଵ଴	paths, 
respectively. As shown in Fig5, the single 
Compton, single Rayleigh, second Compton and 
second Rayleigh signals between gMMC and 
gMCDRR are matched well. Thus we can reach 
speed up around 340 times and 18 times for first 
order and second order scatter signal.

 
Fig. 5. (a)-(d) are the single Compton, single Rayleigh, second Compton and second Rayleigh scattering image from gMMC 
and (e)-(h) are that from gMCDRR. (i)~(l) are profiles on the yellow line in (a)~(h). 
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C. clinical case

In the real head and neck cancer patient
case, the computation time is 30 hrs. after 
4.5 ൈ 10ଵଵ  photons in gMCDRR. In 
comparison, the computation time of the first 
order scatter signal and second order scatter 
signal is 7 mins. for 5 ൈ 10ଽ	paths and 2.2 hrs. 
for 5 ൈ 10ଵ଴	paths, respectively. Therefore the 
speed up is around 257 times and 14 times for 
first order and second order scatter signal. 

In this case as shown in Fig 6, discrepancy 
was observed between gMMC and gMCDRR for 
the second order scatter signal. This is ascribed 
to the different sampling techniques of air 
component in the two programs. However, since 
the scatter signal contributed by the second order 
scatter is much smaller than the first order, this 
discrepancy does not lead to significant 
difference in the overall scatter signal calculation.

Fig. 6. (a)-(d) are the single Compton, single Rayleigh, second Compton and second Rayleigh scattering image from gMMC 
and (e)-(h) are that from gMCDRR. (i)~(l) are profiles on the yellow line in (a)~(h). 

IV. CONCLUSION
In this study, we proposed a Metropolis-Hasting 
sampling algorithm to conduct the simulations 
via a path-by-path scheme in the MC package. 
Different from conventional scheme that 
performs the simulation in a particle-by-particle 
fashion, the proposed method is able to control 
the sampled path such that they can hit on the 
detector with a high probability. This fact allows 
for the substantial reduction of number of 
particles needed to reach a certain level of 
uncertainty. Hence, a greatly enhanced 
computational efficiency can be reached. In our 
testing pencil-beam cases, speed-up factors of 
200 to 300 times for single scatter and 12 to 18 
times for second order scatter can be achieved, 
while the average differences comparing to the 
conventional approach are within 1%. 
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