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Abstract—Cone-beam CT images acquired with C-arm systems
are frequently disturbed by metal artifacts. Recently, correction
algorithms based on the normalized metal artifact reduction
(NMAR) algorithm were introduced for commercial C-arm
systems enabling restoration of most part of soft tissue contrast.
The NMAR algorithm replaces attenuation values of rays passing
through metal by interpolation in projection domain. Since
interpolation is imperfect and can cause inconsistencies, residual
streak and shadow artifacts are often visible even after NMAR
reconstruction. We introduce a novel iterative post-processing
step for the NMAR algorithm which modifies the interpolated
attenuation values by optimizing an image quality metric in
the reconstructed volume to reduce residual artifacts. The novel
approach was able to reduce residual artifacts on all 14 evaluated
clinical neuroradiology datasets with only moderate increase of
computation time (average +12 s).

I. INTRODUCTION

Flat-detector CT (FD-CT) with C-arm systems is frequently
acquired after interventional procedures for assessing treat-
ment success and checking for complication, e.g. cerebral
bleeding in neuroradiological interventions [1]. However, in
many interventions metallic devices like coils are implanted
or highly attenuating embolization material like Onyx is used.
These materials cause severe streak and shadow artifacts
in the reconstructed volume and impede diagnostic image
quality. Recently, metal artifact reduction (MAR) techniques
based on the normalized metal artifact reduction (NMAR)
algorithm [2] were introduced for commercial C-arm systems,
which are able to restore diagnostic image quality and have
computation times suitable for interventional procedures [3],
[4]. The NMAR algorithm starts with an initial reconstruction
of an uncorrected volume. By thresholding operations a metal
volume and a prior volume with tissue, air and bone structures
are extracted. Then, metal masks in the projection images
are computed by forward projection of the metal volume and
normalized projection images are computed by dividing the
projection images by forward projections of the prior volume.
The masked metal in the normalized projections is removed
by interpolation, the corrected projections are denormalized
and the NMAR volume is reconstructed. The advantage of
the normalization in NMAR is that edges from high-contrast
objects like bones are restored in the interpolated metal shadow
and details close to the metal object are better preserved [2].
Nevertheless, clinical experience showed that some disturbing

M. Manhart and C. Rohkohl are with Siemens Healthcare GmbH, Ad-
vanced Therapies, Forchheim, Germany. M. Psychogios, N. Amelung, and
M. Knauth are with Department of Neuroradiology, Universitätsmedizin
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residual streak and shadow artifacts are frequently still visible
in reconstructed volumes. We present a novel iterative frame-
work applicable after NMAR reconstruction, which reduces
residual artifacts in a clinically applicable computation time.
The framework optimizes an image quality metric (IQM) of
the reconstructed volume (e.g., total variation (TV) [5]) by
modifying the interpolated attenuation values of rays passing
through the metal object.

II. MATERIALS & METHODS

A. Clinical MAR Framework

Due to the severe metal artifacts in many clinical FD-
CT images, the computation of the prior image by simple
multilevel thresholding as in the original NMAR algorithm is
not practical. Thus, we use an alternative approach to extract
the prior image. First, an uncorrected volume is reconstructed,
metal objects are extracted by a dedicated automated segmen-
tation algorithm and projection metal masks are computed by
forward projection. The metal is removed by interpolation and
a first corrected volume is reconstructed, which is then used
as the prior volume in a secondary NMAR reconstruction.
Finally, the IQM optimization technique discussed below is
applied to remove residual artifacts.

B. Mathematical Derivation of Optimization Algorithm

1) Notation: The reconstruction problem is denoted by
volume v̂ ∈ RN , measured line integrals p̂ ∈ RM and the
system matrix Â ∈ RM×N indicating the contribution of voxel
i to line integral j

p̂ = Âv̂ p̂j =
N∑
i=1

v̂iâji. (1)

The volume v̂ can be reconstructed using a filtered-
backprojection (FBP) algorithm [6] by backprojection of
weighted and filtered line integrals f̂ ∈ RM

v̂ = ÃTWp̂ = ÃT f̂ W ∈ RM×M , (2)

where matrix W describes the weighting and filtering matrix
and ÃT the backprojection matrix with the corresponding
backprojection weights of the FBP algorithm. In case of
NMAR the values of p inside the metal shadow are estimated
by interpolation, might be inconsistent and cause residual
artifacts. Our goal is to correct the filtered data f̂ to reduce
these inconsistencies. We assume that inconsistencies caused
by interpolation in p̂ have only local influence on the filtered
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data f̂ . Thus, we restrict the problem to the filtered data
f ∈ Rm, m � M containing only the m values inside
or spatially close to the metal shadows and to the voxels
v ∈ Rn, n < N influenced by the filtered values in f . The
matrix A ∈ Rm×n describing the relation between f and v
is build from the corresponding entries in Ã. Furthermore,
we denote the corresponding voxel values from the initial
NMAR reconstruction by v0 ∈ Rn. The IQM is a convex and
differentiable function denoted by F : Rn → R+

0 mapping v
to a non-negative scalar which increases with the strength of
artifacts in the volume (e.g., total variation).

2) Problem Formulation: Our goal is to find filtered data
f opt ∈ Rm with less inconsistencies by adding correction
values sopt ∈ Rm to the filtered NMAR data f

f opt = f + sopt. (3)

When correction values s ∈ Rm are added to f , the corre-
sponding voxel values in the reconstructed volume are given
by

v(s) = v0 +AT s. (4)

To find the optimized correction values sopt, we minimize the
IQM evaluated on the updated volume voxels v(s)

sopt = argmins F (v(s)) F (v(s)) : Rm → Rn → R+
0 .

(5)
By inserting Equation 4 in Equation 5 the optimization prob-
lem results in

sopt = argmins F
(
v0 +AT s

)
. (6)

3) Gradient Descent Optimization: As F is a convex func-
tion, Equation 6 can be solved using a gradient descent scheme
with line search [7]. The gradient decent algorithms applies
iterative updates

sk = sk−1 − αk∇Fk, k ∈ N

with step size αk ∈ R+ until the minimum at sopt is found.
To apply the gradient descent scheme, the gradient ∇F of the
IQM w.r.t. to the correction values s is needed. Furthermore, an
appropriate step size αk must be determined for each iteration.

Gradient Computation: The gradient of F w.r.t. s is

denoted by ∇F =
(
∂F
∂s1

, · · · , ∂F∂sm
)T

. The partial derivatives
∂F
∂sj

can be derived via the chain rule of differentiation and
Equation 1

∂F

∂sj
=

n∑
i=1

∂F

∂vi

∂vi
∂sj

=
n∑
i=1

∂F

∂vi
aji, (7)

∇F = A
∂F

∂v
. (8)

Equation 8 shows that ∇F is calculated by computing the
gradient of F w.r.t. to the voxel values and forward projection
via A.

Line Search: An appropriate αk can be determined by
line search

αk = argminα∈R+F
(
v0 +AT (sk−1 − α∇Fk)

)
(9)

With vk−1 = v0 +AT sk−1 denoting the resulting volume of
the previous iteration step and ∇vk = AT∇Fk denoting the
backprojected gradient, we reformulate Equation 9

αk = argminα∈R+F (vk−1 − α∇vk) . (10)

Thus, the line search can be computed completely in the
volume domain and only an initial backprojection operation
to compute ∇vk is required.

C. Image Quality Optimization Framework

Based on the results of Equation 8 and 10 the optimization
framework shown in Figure 1 is derived. In this work, the
well-known TV [5] is used as IQM. However, the framework
supports any convex IQM where a gradient w.r.t. voxel values
can be computed. As input for the framework serves the
initially reconstructed volume using NMAR including the
metal masks in volume and projection domain. In step 1 the
soft tissue voxels potentially affected by metal artifacts (i.e.,
soft tissue voxels in slices with or close to metal objects) are
segmented by thresholding. These soft tissue voxels are used
in the subsequent iterative IQM optimization. Step 2 computes
the gradient of the TV norm [8] w.r.t. to v on the segmented
voxels. In step 3 the IQM gradient w.r.t. the correction values
s is computed by forward projection of the volumetric gradient
on to the metal shadow (see Equation 8). In step 4, the IQM
gradient w.r.t. s is backprojected on to the segmented voxels
to compute a volumetric IQM gradient w.r.t. s. As shown by
Equation 10 this allows to find an appropriate step size by line
search in step 5 without any further computational expensive
projection steps. The line search is conducted by back tracking
line search [7]. Then the volume is updated with volumetric
gradient and the found optimal step size. Finally, Step 6 checks
for stopping criterion. In this work we always stop after a
fixed number of 10 iterations. The general framework was
implemented using C++ programming language, the forward-
and backprojection operations [9] as well as the TV and TV
gradient computation were implemented using CUDA GPU
programming language.

III. CLINICAL EVALUATION

A. Clinical Datasets

We evaluated the proposed optimization framework with 14
clinical FD-CT datasets acquired using an Artis Q angiography
system (Siemens Healthcare GmbH, Germany). A dedicated
head soft tissue contrast protocol was used with 20 s acqui-
sition time, 496 projections, 200° angular range, tube voltage
109 kV and a dose of 1.8µGray per projection. All datasets
contain a single or multiple highly attenuating objects like
metal coils or Onyx embolization material causing extensive
streak and shadow artifacts in volumes reconstructed without
MAR. All datasets were reconstructed using a proprietary
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Figure 1. Flowchart of IQM optimization framework.

exact FBP-type reconstruction software without any MAR,
using NMAR and using NMAR plus the proposed additional
optimization step (NMAR+OPT).

B. Qualitative Evaluation

For qualitative evaluation the reconstruction of all datasets
using NMAR was compared to NMAR+OPT by a user expe-
rienced with FD-CT imaging. The improvements from NMAR
to NMAR+OPT were rated in a range from 0 (no improve-
ment) to 3 (strongest improvement). Figure 2 shows example
slices with corresponding ratings. From the 14 datasets, 3
achieved rating 1, 5 rating 2 and 6 rating 3 and the average
rating was 2.2. The additional optimization was beneficial
in all datasets and no degeneration in image quality by
NMAR+OPT was found.

C. Computation Time

The reconstructions were computed on a dedicated clinical
workstation with Intel® Xeon® processor E5-1650 with 6
cores and 3.20 GHz, 32 GB RAM and NVIDIA® Quadro®
K5000 GPU with 4 GB GPU RAM. The computation time for
the additional optimization step was measured for all clinical
datasets and depends on the size of the metal object. The range
of the computation time was between 4 s and 49 s with an
average of 12 s and a median of 5.5 s.

IV. DISCUSSION & CONCLUSIONS

The NMAR [2] is able to improve diagnostic image quality
in FD-CT datasets with metal artifacts [3] and is a very
valuable technique for interventional FD-CT imaging [4].
However, some disturbing streak and shadow artifacts are often
still visible in soft tissue imaging. These artifacts are caused
by the imperfect interpolation of the attenuation values in the
metal shadow. To further reduce residual artifacts, we intro-
duce an iterative framework as an additional post-processing
step for the NMAR algorithm. The framework adjusts the
filtered attenuation values inside the metal shadow such that an
image quality metric (IQM) determined on the reconstructed
soft tissue is optimized. The derived iterative framework is
computationally efficient since the problem dimension can be
reduced to projection values in the metal shadow and voxels
in metal artifact affected slices. Furthermore, the framework
allows to determine an optimal step size in each iteration
via line search in volume domain. This avoids the problem

in general iterative reconstruction algorithms to determine an
appropriate step size providing convergence guarantee and
speed. We use total variation [5] as IQM, however, it is
possible to use other convex and differentiable IQMs within
the framework. The proposed framework successfully reduced
residual artifacts in an evaluation with 14 clinical FD-CT
head datasets with only a moderate computational complexity
compared to fully iterative reconstruction approaches (average
additional computation time was 12 s). One limitation of
this work is the clinical evaluation which was not blinded
and included only a limited number of datasets. In future
studies a more extensive and blinded clinical evaluation is
desired, also with datasets from other body regions (e.g.,
liver). Furthermore, alternative IQMs like the image histogram
entropy and improved stopping criterion could be evaluated.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available.
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Figure 2. FD-CT head images with metal objects reconstructed without MAR (left), with NMAR (center) and with NMAR+OPT (right). The right column
shows the NMAR vs. NMAR+OPT improvement rating. Window [-50 150] HU, slice thickness 5mm.
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