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View Aliasing Artifacts Reduction Method Based
on 4D Cone-Beam CT Reconstruction with Joint

Projection Data
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Abstract—Although the quality of the phase-resolved recon-
struction images could be improved by the four-dimensional 
cone-beam computed tomography (4D-CBCT) by reducing the 
motion blurring artifacts, it may still be degraded by severe view-
aliasing artifacts because of highly under-sampled projections at 
each phase. Inspired by the strong correlation between different 
phase-resolved reconstructed images, we present a simple and 
effective approach to estimate a set of full-sampled projections 
for every individual respiratory phase and then to incorporate 
them into the 4D-CBCT iterative reconstruction scheme. In the 
implementation of the 4D-CBCT iterative reconstruction scheme, 
a coupled distance-driven forward and backward projection 
operator via GPU is introduced. The proposed method has 
been tested in a digital XCAT phantom and a clinical patient 
case. Quantitative evaluations indicate that a 15.7% and 9.9%
decrease in the root-mean-square error (RMSE) are achieved by 
our method when comparing with the conventional 4D-CBCT 
reconstruction method and the classic McKinnon/Bates algorithm 
(MKB), respectively. At the same time, our method is also valid 
by calculating the contrast-to-noise ratio (CNR) of a region of 
interest (ROI). The result shows that the CNR of our method is 
1.34, which is better than that of the MKB algorithm.

Index Terms—Cone-Beam CT, 4D-CBCT Reconstruction, 
MKB algorithm, Joint projection data

I. INTRODUCTION

CBCT has been clinically used to verify the patient position,
localize the target of treatment and offer possibilities to update
the treatment protocol in the image-guided radiation therapy
(IGRT) [1]. However, due to the rotational speed limitations of
kV imaging systems on linear accelerator gentries, the conven-
tional CBCT acquisition gives rise to motion blurring problems
of moving organs. 4D-CBCT reconstruction technique [2] has
been recently developed to overcome the shortcomings. In 4D-
CBCT, the acquired full-sampled projections are sorted into
different groups corresponding to various breathing phases and
to reconstruct the phase-resolved images independently. Nev-
ertheless, under-sampling streaking artifacts are present in the
reconstructed images, and the image contrast resolution is also
significantly compromised. Moreover, the projection views for
a certain phase in 4D-CBCT are usually clustered into several
groups with a larger angular spacing between projections [3].
Consequently, the low efficiency of the bunched sampling
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Fig. 1. The uniformed sampling pattern and the bunched sampling pattern.

pattern leads to an increasing artifacts level when comparing
with the uniform sampling pattern in most conventional few-
view problems in CT Fig. 1.

Many efforts have been devoted to solve the data under-
sampling problem in 4D-CBCT [4]–[7]. One strategy is to
directly extract the motion affected volumetric images in
projection domain by calculating the difference between the
forward projection of a prior volumetric reconstruction and the
measured projections(such as the MKB algorithm [8], [9] and
its modified version [10]).

Although the MKB algorithm has the potential of suppress-
ing view aliasing artifacts effectively and being implemented
easily, it still suffers from low SNR and other artifacts [10]
caused by the insufficient number of projection views and the
inaccurate estimation of motion-compensated images. Base on
observations that different phase-resolved images have strong
interactions between each other, it can be assumed that the
principal component of the motion variation among different
phases can be well approximated by comparing the difference
of interconnected phase-resolved reconstructions from one
another.

Inspired by the assumption, we propose a simple but effec-
tive method for eliminating residual view aliasing artifacts by
using the subtraction between different phase-resolved images
in projection domain to generate a set of joint full-view
projections for a single phase reconstruction. In addition, we
also introduce a coupled distance-driven (DD) forward and
backward projection operator [11], [12] via the GPU accel-
eration technique [13] in the implementation of the proposed
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Fig. 2. The flowchart of the proposed method, which can be divided into independent phase-resolved reconstruction, difference projection data generation,
and full-view joint projection completion followed by phase-resolved reconstruction.

4D-CBCT iterative reconstruction method.

II. MATERIALS AND METHODS

A. The framework of the proposed method

The proposed method is organized in the following three
steps: independent phase-resolved reconstruction, difference
projection data generation, and full-view joint projection
completion followed by phase-resolved reconstruction. The
detailed flowchart for the proposed method is illustrated in
Fig. 2.

1) Independent phase-resolved reconstruction: It is as-
sumed that the breathing signal can be obtained from either
external surrogate or respiratory signal extraction algorithms,
accordingly the set of measured projection images can be
classified into different nt phase bins {j = 1, 2, · · · , nt}
(nt is usually set to 10) with an expression of P = {Pj =
Ajµj +Nj , j ≤ nt}.

In this work, 4D-CBCT images {µj |j = 1, 2, 3, · · · , nt} at
each phase j are reconstructed by an algebraic reconstruction
technique (ART), which is posed by Eq. (1), where Aj repre-
sents the system matrix corresponding to the X-ray transform
of the phase j.

µ̂j = argmin
µ
‖Ajµj − Pj‖22 (1)

2) Difference projection data generation: Based on the nt
phase-resolved volumetric images obtained in Section II-A1,
(nt − 1) difference images are generated by subtracting the
remaining (nt − 1) images from the 1st one.

Before the difference projection is achieved by forward-
projection operator, we have applied statistic histograms for
each difference images. It is shown that the peak value of every

statistic histogram can reflect principle energy of the difference
images especially for motion variation. Thus, an histogram
based thresholding segmentation method is adopted to reduce
the tiny difference caused by the anatomy background or the
view-aliasing artifacts of the reconstruction.

3) Reconstruction using the full-view joint projection for
each phase: Instead of insufficient projections sorted by gating
technique for each phase, a set of joint full-view projections
are generated by incorporating the residual projections into
measured projections. Subsequently, the corresponding phase-
resolved CBCT images can be reconstructed with no streaking
artifacts .

B. Reconstruction algorithm based on coupled distance-
driven projector pair

Projector and back-projector pair are used to refine an image
estimation in iterative image reconstruction. The performance
of an iterative reconstruction algorithm for X-ray tomography
strongly relies on the match level and the type selection of
tomographic operators [14]. Based on the fact that projector
and back-projector pair are conducted many times in Sec-
tion II-A1 and Section II-A3, a coupled distance-driven based
tomographic projector is adopted to implement the 4D-CBCT
iteration reconstruction scheme. Numerical experiments were
carried out to explore the artifacts reduction performance and
the degree of matching of projection operators by comparing
the coupled DD operator with the uncoupled pixel-driven
(PD) [12] and the ray-driven (RD) approaches [15], [16],
respectively.

III. NUMERICAL EXPERIMENTS AND RESULTS ANALYSIS

An XCAT phantom [17] and a real clinical case are both
studied to evaluate the performance of our algorithm.
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The XCAT phantom is at thorax region which can provide
a realistic model of the human anatomy and can be used
to simulate both cardiac and respiratory motion. The regular
respiratory pattern is set to a period of 4 second while the
heartbeat rhythm is set to a period of 0.8 second. Generally,
the respiratory cycle is divided into 10 phases and the CBCT
scanning time is 60 second with 600 projection images through
360◦ gantry rotation (full-fan scan mode). Hence, the number
of projections for each respiratory phase is 60 views. The
dimension of the phantom is 256×256×100 with an isotropic
voxel size of 1 mm. The source-to-isocenter distance and
the source-to-detector distance are 1000 mm and 1536 mm
respectively. The X-ray detector size is 409.6×409.6 mm with
the resolution 512×384 pixel2.

For the real data, the patient is scanned by an Eleka
XVI system (Elekta AB, Stockholm, Sweden) with a off-
center positioned scanning protocols such that the iso-center
focuses on the left lung. Total 1169 views of X-ray pro-
jections are acquired in 200 degree gantry rotation (short-
scan mode) in 4 minute. The respiratory signal is obtained
by Amsterdam Shroud method [18] because the scale of
breathing condition can be precisely reflected by the motion of
the thoracic diaphragm. The projections are grouped into ten
phases according to the respiratory signal. The detector size
is 409.6×409.6 mm2 with the resolution of 512×512 pixel2

in both dimensions. The source-to-isocenter distance and the
source-to-detector distance are the same to that of the XCAT
geometry. The reconstructed image volume is 256×256×256.

TABLE I
ROOTED-MEAN-SQUARE ERROR (RMSE)

RMSE MKB Proposed Method DD PD-RD

XCAT 6.3203 5.6946 6.7548 6.6293

TABLE II
CONTRAST-TO-NOISE RATIO (CNR)

CNR MKB Proposed Method DD PD-RD

NKI Data 0.9313 1.3379 0.7316 1.4016

1) Results: We first display the reconstructed 4D-CBCT
volumetric images in Fig. 3 and Fig. 4 for the XCAT case and
the patient case, respectively. As can be seen in Fig. 3, the 1st

to the 3th column represent ground truth of the XCAT phantom
at phase 1, the results of the proposed method and the results
of MKB algorithm respectively. The 4th and the 5th columns
are the conventional 4D reconstructions at phase 1 based on
coupled DD projector and the uncoupled RD-PD projector,
respectively. The three rows present the tomographic image
at slice 25, 50, 70 of the reconstructed XCAT phantom. In
Fig. 4, we present the results using four methods at transversal,
coronal and sagittal views.

Due to inadequate X-ray projections in each phase, no
matter whether the coupled DD projector or the uncoupled
RD-PD projector is used or not, obvious streaking artifacts are
observed in the conventional 4D reconstructions. Moreover,

the images produced by the MKB algorithm have relatively
more distinct anatomical structures when comparing with
independent 4D reconstructions at different slices. However,
the image quality of the motion-compensated reconstruction
by the MKB method is deteriorate by streaking artifacts due
to limited number of projections. In the 2nd column by the
proposed method, those streaking artifacts appeared in the
MKB algorithm are effectively suppressed with a arrow mark,
while the anatomical features are well preserved.

In Fig. 4, the full-view reconstruction represents the image
reconstructed by the whole measured projections with explicit
static features while blurred dynamic features especially at
the diaphragm location. It can be observed that the results of
the proposed method have little streaking artifacts and more
distinct reconstruction at the motion part compared with the
other two methods.

2) Quantitative analysis: We use two quantitative metrics
to assess the 4D-CBCT reconstructed image quality. The
first assessment index is the RMSE for the XCAT simulated
phantom. The results are shown in Table I. The second
assessment index is the CNR, which is calculated as CNR =
2|µ − µb|/(σ + σb), where µ and µb are the mean values in
the ROI and in a nearby region considered as the background,
respectively. It is for quantifying the tumor detection capability
for a given ROI that is marked by a red circle in Fig. 4. σ
and σb are the standard deviations of the pixel values inside
the ROI and in the background. We have measured the CNRs
in each phases and calculated the average CNR over all 10
phases. The results are shown in Table II.

Obviously both RMSE and CNR metrics can demonstrate
that our proposed method is better than the conventional MKB
algorithm.

IV. CONCLUSIONS

Inspired by the core idea of the MKB algorithm, we develop
a simple but effective method with joint cone-beam projec-
tion images in the 4D-CBCT reconstruction algorithm. Our
method is aiming to suppress the streaking artifacts caused by
insufficient projections for each phase. Numerical simulation
and clinical data proves its effectiveness in alleviating this
kind of artifacts. Our method is better than the conventional
MKB algorithm and 4D independent reconstruction method
according to both qualitative analysis and quantitative evalu-
ation. Moreover, a coupled DD projector is adopted into the
proposed method to avoid the error caused by mismatches
of forward and backward projector. As can been seen from
the convergence curve in Fig. 5, the RMSE value of coupled
DD projector is far lower than that of uncoupled PD-RD
projector.It indicates that the coupled DD projector based has
the ability of yielding superior reconstructions then the other
tomographic projectors.

However, our method can be further improved in two
aspects. On one hand, the spatial resolution of the bronchi
with the feature of branches of trees is not improved so much,
which may have an influence on the correct position of tumor
near the areas. It is expected that by further exploring the
full potential of the correlation between temporal phases, this
drawback could be remedied.
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Fig. 3. Ground truth as well as reconstruction of the simulated XCAT phantom using different reconstruction techniques. The gray scale window is
[0.005, 0.035].

Fig. 4. 4D-CBCT images of NKI real patient data at first phase bin. A transversal (top row), a coronal (middle row), and a sagittal view (bottom row) are
displayed. The prior volumetric reconstruction without phase binning (first column left), the reconstruction of the proposed method (the second colume left),
the MKB algorithm based reconstruction (third column, middle) as well as the phase-resolved reconstruction by ART (fourth column left) are presented. The
red circle indicates the ROI of the tumor-like structure used to evaluate the CNR while the red arrows present the improvements of our method. The gray
scale window is [0.005, 0.035].

On other hand, the frequency of using forward and back-
ward projection operators in our method is high, so we
should draw support from the GPU acceleration, and thus its
computational efficiency need to be discussed in our further
research.
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