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Abstract—Anisotropic X-ray Dark-field Tomography (AXDT)
is a recently introduced imaging modality to recover anisotropic
scattering functions of volumetric objects from dark-field data
acquired by an X-ray grating interferometer. Current recon-
struction methods implicitly assume a Gaussian distribution
of the noise in the negative logarithm of the data. In this
paper we derive log-likelihood functions for use in statistical
reconstruction methods, based on more accurate noise models of
the measured X-ray grating interferometer data. We also discuss
some properties of these functions relevant to optimization.

I. INTRODUCTION

Anisotropic X-Ray Dark-Field Tomography (or in short:
AXDT, [10]) is a recently introduced imaging modality, recon-
structing scattering functions from dark-field data. This dark-
field data, which relates to small angle X-ray scattering, is
acquired using an X-ray grating interferometer [8], see Fig. 1
for a schematic overview.

Fig. 1. Schematic overview of an X-ray grating interferometry setup.

As the dark-field signal changes when rotating the object
around the X-ray beam direction, a full tomography of the
directionally dependent dark-field signal requires reconstruc-
tion of anisotropic non-scalar quantities. In AXDT [10], this
is realized using spherical functions, which are represented
using spherical harmonics coefficients in a discretized vector η.
Using the dark-field signals d̃j , j = 0, . . . , J − 1, as extracted
from the raw X-ray grating interferometer measurements, the
work presented in [10] reconstructs η from the d̃j via a simple
least squares minimization approach, implicitly assuming a
gaussian noise property of the dark-field signal.

In this work we use the known, correct noise properties
of the dark-field signal and the underlying X-ray grating
interferometer signal [3] to formulate log-likelihood functions
suitable for statistical reconstruction of the scattering func-
tions. We also derive the first two derivatives of the log-
likelihood functions for use in gradient-based optimization al-
gorithms. Finally, we discuss various implications for practical
implementations, as well as the relationship to similar works
such as [2], [9].

II. PRELIMINARIES

Let s̃n,j denote the raw measurements of the X-ray grat-
ing interferometer, indexed by the stepping of grating G2
n = 0, . . . , N − 1, and by j = 0, . . . , J − 1 for each source-
detector pair. Using the simplifying assumption that the only
noise in the measurements comes from that inherent to photon-
counting, it has been shown (c.f. [3]) that the corresponding
random variables Sn,j are independently Poisson distributed
with mean

sn,j = aj + bj cos

(
2πn

N
− ϕj

)
.

Here aj is proportional to the absorption and bj
aj

is pro-
portional to the j-th dark-field coefficient denoted by dj .
Throughout this document, we use capital letters to refer to
random variables, and lower case letters with a tilde (for
example s̃n,j) to refer to values derived directly from measured
quantities.

With the discrete Fourier transform over n of the sn,j ,

ck,j =
1

N

N−1∑
n=0

exp(−2πik/N)sn,j ,

we have
aj = c0,j and bj = 2|c1,j |.

In the same way, we obtain ãj and b̃j from the discrete Fourier
transform coefficients of the measurements s̃n,j . Using this
and by approximating the Poisson-distributions by Gaussian
distributions, Chabior et al. [3] derive that for the correspond-
ing random variables it holds that

Aj ∼ N
(
aj ,

aj
N

)
and

1

2
Bj ∼ R

(
bj
2
,

√
aj
2N

)
,

where N denotes the Gaussian distribution and R denotes the
Rician Distribution.

The j-th dark-field coefficient is given by dj = α−1
j a−1

j bj
with the corresponding random variable Dj , where αj denotes
the visibility of the reference or “flat-field” scan (without the
object in the beam). Throughout this document we make the
assumption that the flat-field values are known, which is an
assumption commonly made for statistical reconstruction in
the transmission tomography case (see for example [4]).

Finally, in order to keep the notation short and concise,
we introduce subscript-less variants of the quantities just
introduced to represent the full vectors for all j = 0, . . . , J−1.
For example we have the random vector D = (Dj) with
d = (dj) and realizations d̃ = (d̃j), with j = 0, . . . , J − 1.
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III. STATISTICAL MODELS

The direct reconstruction method of AXDT [10] maximizes
the negative 2-norm of the residual, that is

f0(η) = −
∥∥(− ln(d̃)

)
− Bη

∥∥2
2
, (1)

where ln is to be understood component-wise, B denotes the
system-matrix for AXDT, and η is the vector of spherical
harmonics coefficients to be reconstructed. This approach
would be expected to perform well in a statistical sense if
ln(D) were Gaussian, or at least close to Gaussian. However, if
instead D were Gaussian (or close to a Gaussian distribution),
due to Jensen’s inequality and the convexity of the logarithm
a bias would be expected.

In the following we introduce several statistical models,
which are increasingly more realistic in the statistical assump-
tions of the underlying signal.

A. Model 1: Assuming Gaussian D

We first assume the Dj to be independent, Gaussian with
equal variance σ2. The log-likelihood is then

f1(η) = −
∥∥ exp(−Bη)− d̃

∥∥2
2
,

leading to the optimization problem arg maxη f1(η). Using the
AXDT forward model we have d = exp(−Bη), which allows
us to write:

f1(η) = −1T (d− d̃)2, (2)

where 1T is defined as the row-vector (1, . . . , 1) used as a
short-hand notation for the sum. Using the chain-rule, we
receive the gradient and Hessian as

∇f1(η) = 2BT d(d− d̃)

Hf1 = −2BT diag
(
d(2d− d̃)

)
B.

B. Model 2: Using the Rician Distribution

Using the definition of the dark-field coefficients, we have
b = αad. Furthermore, given flat-field absorption values γ =
(γj), the Beer-Lambert Law states a = γ exp(−Aµ), where A
denotes the system matrix for X-ray CT and µ is the vector of
absorption coefficients. For statistical reconstruction, we must
therefore perform a joint optimization of the log-likelihood
over both µ and η. Applying that Aj ∼ N (aj ,

aj
N ) and 1

2Bj ∼
R( 1

2bj ,
√

a
2N ) we obtain a log-likelihood function of:

f2(µ, η) = 1T
(

ln
(
ga, a

N
(ã)
)

+ ln
(
r 1

2 bj ,
√

a
2N

( 1
2 b̃j)

))
, (3)

where g and r are the probability density functions (pdf)
of the Gaussian and Rician distributions, respectively (to be
understood component-wise).

We have that ln(ga, a
N

(ã)) = ln(N)−ln(a)−ln(2π)
2 − N(ã−a)2

2a .
We leave out the constant terms when forming the functional,
as they do not affect the optimization problem.

1) Approximating Rician Distribution by a Gaussian:
The pdf of the Rician-Distriution is quite complicated, but
for large values of ν/σ it is very similar to a Gaussian
distribution of mean

√
ν2 + σ2 and variance σ2 [5]. We

further make the assumption that σ is small enough that the
distribution has a mean of approximately ν. The term from the
Rician distribution (ignoring additive constants) then becomes
− ln(a)

2 +
2N( 1

2 b̃−
1
2 b)

2

2a . Rearranging and adding the contribution
from the Gaussian term yields:

f2G(µ, η) = 1T

(
− ln(a)− 2N(ã− a)2 +N(b̃− aαd)2

4a

)
,

(4)
with again component-wise operations. Applying the chain-
rule gives the following gradient:

∇µf2G(µ, η) = AT
(

1 +
N(2a2 − 2ã2 + a2α2d2 − b̃2)

4a

)
∇ηf2G(µ, η) =

1

2
BT
(
αdN(aαd− b̃)

)
The Hessian has the following form:

Hf2G =

[
AT 0
0 BT

] [
H(1,1) H(1,2)

H(2,1) H(2,2)

] [
A 0
0 B

]
where:

H(1,1) =
−N

2
diag

(
2a2 + 2ã2 + a2α2d2 + b̃2

2a

)
H(1,2) = H(2,1) =

−N
2

diag
(
aα2d2

)
H(2,2) =

−N
2

diag
(
d(2α2ad− αb̃)

)
.

2) Using the Rician Distribution Directly: The Rician dis-
tribution has a pdf of: rν,σ(x) = x

σ2 exp
(

−(x2+ν2)
2σ2

)
I0
(
xν
σ2

)
,

where Ik denotes the k-th modified Bessel Function of the
first kind with Ik(t) = 1

π

∫ π
0
et cos x cos(kx) dx [7].

Discarding constants, we can write the Rician term of the
log-likelihood function exactly as:

− ln(a)−
2N
(

( 1
2 b̃)

2 + ( 1
2b)

2
)

2a
+ ln I0

(
Nb̃b

2a

)

Combining this with the term from the normal distribution and
discarding constants yields

f2R(µ, η) =1T

(
−3 ln(a)

2
− N(2ã2 + 2a2 + b̃2 + a2α2d2)

4a

+ ln I0

(
b̃αdN

2

))
(5)
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For the gradient we have:

∇µf2R(µ, η) = AT
(

3

2
+
N(2a2 − 2ã2 + a2α2d2 − b̃2)

4a

)

∇ηf2R(µ, η) = BT
N

2
aα2d2 −

b̃αdNI1

(
b̃αdN

2

)
2I0

(
b̃αdN

2

)


We note in passing that for the numerical calculation of the
∇ηf2R it may be useful to use the bounds obtained by [1].
They prove that coth(x)− 1

x <
I1(x)
I0(x)

< tanh(x), from which

it follows that I1(x)
I0(x)

quickly goes to 1 with x→∞.

For readability, we define the short notations q(x) := I1(x)
I0(x)

and z = b̃αdN
2 . Computing the Hessian in the format described

above, we get:

H(1,1) = diag

(
−N(2a2 + 2ã2 + a2α2d2 + b̃2)

4a

)
H(2,1) = H(1,2) =

−N
2

diag
(
aα2d2

)
H(2,2) = diag

(
−Naα2d2 + z2(1− q(z)2)

)
.

C. Model 3: Statistical Reconstruction directly from Measure-
ments

If we directly use the fact that the Sn,j have a Poisson
distribution with mean sn,j , then we must also include the ϕj
as variables. In lieu of setting up a forward-model for them,
we can simply add them as additional terms to be optimized
for. The log-likelihood functional then has the form

f3(µ, η, ϕ) = (6)
N−1∑
n=0

1T
(
−a+ s̃n ln

(
a+ aαd cos

(
2πn

N
− ϕ

)))
To aid readability, we define ψn = cos

(
2πn
N − ϕ

)
and Γn =

sin
(
2πn
N − ϕ

)
. The gradient is then

∇µf3(µ, η, ϕ) =
N−1∑
n=0

AT (a− s̃n)

∇ηf3(µ, η, ϕ) =
N−1∑
n=0

BT
(
−s̃nαdψn
1 + αdψn

)

∇ϕf3(µ, η, ϕ) =
N−1∑
n=0

s̃nαdΓn
1 + αdψn

For the Hessian, we observe that it has the form:

Hf3 =

diag(A,B, I)T

 H(1,1) 0 0
0 H(2,2) H(2,3)

0 H(3,2) H(3,3)

diag(A,B, I),

where I denotes the identity matrix of size M . We further
have

H(1,1) = −N diag(a)

H(2,2) =
N−1∑
n=0

diag

(
s̃nαdψn

(1 + αdψn)
2

)

H(2,3) = H(3,2) =
N−1∑
n=0

diag

(
−s̃nαdΓn

(1 + αdψn)
2

)

H(3,3) =
N−1∑
n=0

diag

(
−s̃nαd(αd+ ψn)

(1 + αdψn)
2

)

IV. DISCUSSION

As can be seen from Fig. 2, all likelihood functions derived
in this document penalize small values much stronger than
those of the least squares functional f0 minimized by [10].
For the particular data example chosen for the plot (which
was taken from a real grating interferometer measurement),
the approximations derived in this document resemble the
theoretical log-likelihood f3 of the most accurate model 3, see
also Fig. 3. Whilst this even seems to be true for the simplistic
model 1 (f1), we would nevertheless expect better results from
the more advanced models, especially in reconstructions that
would otherwise suffer from streaks of noise originating from
high-variance readings. In these the variance depends on the
detector value and the high variance from higher pixel values
is taken into account by models 2 and 3. Of course our single
data example may also not be representative.

Fig. 2. Graphs of negative log-likelihood functions f0, f1, f2G, f2R, f3 for
example data s̃n with a = ã and ϕ = − arg(c̃1). All graphs, except for the
one for f0, were scaled by the factor 1

50
and translated vertically in order to

fit in one plot nicely.

All of the log-likelihood functions derived are both non-
quadratic (due to the exponential dependence on µ and η) and
also asymmetric around the minimum. Physical considerations
limit the values of a and b to be positive with a > b,
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Fig. 3. Minima of the functions f0, f1, f2G, f2R, f3 as plotted in Fig. 2.
The black line (f3) and the blue line (f0) coincide with the red one (f2G).

furthermore 0 < d ≤ 1 and 0 < α ≤ 1. This should be
taken into account when optimizing, and the analysis below
depends on these assumptions.

For model 1 (f1), it is clear from the Hessian that the
log-likelihood function is (locally) strictly concave whenever
d > 1

2 d̃ and A has trivial kernel. For model 2.1 (f2G), Theo-
rem 7.7.7 of [6] gives a neccessary and sufficient condition for
positive-definiteness to be that −H(1,1) is positive definite and
that (−H(2,2))−(−H(2,1))(−H(1,1))−1(−H(2,1))T is positive
definite. Writing this out and simplifying gives equivalently
that 2b(2a2 + 2ã2 + b̃2)− b̃(2a2 + b2 + 2ã2 + b̃2) is positive
(in each component). This is the case when b > 3

4 b̃ and
a > b. Hence a sufficient condition for local concavity (if
A and B have trivial kernel) is given by 3

4 b̃ < b < a.
A practical challenge for using these functionals is the fact
that the current formulations can produce very large values,
creating numerical issues. For implementation purposes, we
suggest scaling or translating the functionals in a way that
preserves their properties but results in smaller values.

Similar statistical reconstruction methods have already been
demonstrated to perform well on phantom images and images
of mice by [9] and [2]. The methods there are most similar
to those described in model 3 (f3), in that they perform
reconstruction from the raw detector readings s̃n. However,
both only calculate the mean scattering and do not attempt to
reconstruct the anisotropic scattering as is done by AXDT.

In a sense our work in model 3 can be seen as a general-
ization of this; though it should also be noted that we do not
reconstruct the differential phase contrast image as [9] and [2]
do. A direction explored by [9], which we did not look into
further yet, is reconstruction from only a subset of the values
in each vector (s̃n)n=0,...,N1 conventionally required for direct
reconstruction. This has the potential to greatly reduce the
number of required readings and shows promising results. We
note that the equations from model 3 can easily be modified to
take this into account, though some additional work is required
to estimate the αj and γj required by the formulae. In [9] and
[2] a slightly different forward model is used to account for
this, and it is possible that this can be modified to work with
AXDT.

We also note that model 3 can be modified to reconstruct

η only (instead of doing a joint reconstruction), or extended
with a forward-model for the phase-contrast ϕ. Evaluations
using real experimental data are currently in progress. A
further aspect that could be looked into is the addition of a
regularization term as was done by [2].

V. CONCLUSION

We have presented several log-likelihood functions, as well
as their derivatives, for use in statistical reconstruction meth-
ods for X-ray grating interferometry data. We were also able
to show (local) concavity for one of advanced models (f2G).
While the more accurate models are harder to optimize, we
expect improved reconstruction results in practice.
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[5] Hákon Gudbjartsson and Samuel Patz. The rician distribution of noisy
mri data. Magnetic resonance in medicine, 34(6):910–914, 1995.

[6] Charles R Johnson and Roger A Horn. Matrix analysis. Cambridge
University Press Textbooks, 2012.

[7] Venkatarama Krishnan and Kavitha Chandra. Probability and random
processes. John Wiley & Sons, 2015.

[8] Franz Pfeiffer, Martin Bech, Oliver Bunk, Philipp Kraft, Eric F. Eiken-
berry, Christian Brönnimann, Christian Grünzweig, and Christian David.
Hard-x-ray dark-field imaging using a grating interferometer. Nature
Materials, 7(2):134–137, 2008.

[9] André Ritter, Gisela Anton, and Thomas Weber. Simultaneous
maximum-likelihood reconstruction of absorption coefficient, refractive
index and dark-field scattering coefficient in x-ray talbot-lau tomography.
PloS one, 11(10):e0163016, 2016.

[10] Matthias Wieczorek, Florian Schaff, Franz Pfeiffer, and Tobias Lasser.
Anisotropic x-ray dark-field tomography: A continuous model and its
discretization. Physical Review Letters, 117(15):158101, 2016.

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

680




