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Abstract—Dual-energy computed tomography (CT) is to 

reconstruct images of an object from two projection datasets 

generated from two distinct x-ray source energy spectra. It can 

provide more accurate attenuation quantification than 

conventional CT with a single x-ray energy spectrum. In the 

diagnostic energy range, x-ray energy-dependent attenuation can 

be approximated as a linear combination of photoelectric 

absorption and Compton scattering. Hence, two physical 

components of x-ray attenuation can be determined from two 

spectrally informative projection datasets to achieve 

monochromatic imaging and material decomposition. In this 

paper, a projection-domain image reconstruction method is 

proposed to accurately quantify the two attenuation components 

for dual-energy CT. This method combines both an analytical 

algorithm and a single-variable optimization method to solve the 

non-linear polychromatic x-ray integral model, allowing an 

efficient and accurate decomposition of physical basis 

components. Numerical tests are performed to illustrate the merit 

of the proposed method. 
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I. INTRODUCTION 

OMPUTED tomography (CT) can reconstruct a 

three-dimensional image of an object from a series of 

projections, providing important diagnosis information. In 

clinical CT, an x-ray source is polychromatic, and x-ray 

detectors are currently operated in a current-integrating mode. 

CT image reconstruction is based on an approximate line 

integral model, ignoring x-ray energy information. However, 

lower energy photons are more easily absorbed than higher 

energy photons, which would cause the x-ray beam to become 

increasingly harder as it propagates through the object [1]. This 

physical model mismatch would generate significant 

beam-hardening artifacts in the reconstructed image. 

Dual-energy CT is a well-established technique, allowing 

monochromatic imaging and material decomposition [2, 3]. 

Current dual-energy x-ray imaging methods include 

kVp-switching, dual-layer detection, dual-source scanning, and 

simplistic two-pass scanning.  
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Several image reconstruction methods for dual-energy CT 

were developed over the years. Alvarez and Macovski 

proposed an image reconstruction method in the projection 

domain by solving a non-linear integral equation to decompose 

dual-energy measurements into two independent sinograms, 

each of which corresponds to a basis component [2]. 

Alternatively, image-domain reconstruction methods first 

reconstruct images from the low- and high-energy sinograms 

using filtered back projection (FBP), and then perform 

image-domain material decomposition [4, 5]. This type of 

image-domain reconstruction makes substantial 

approximations in energy spectra, resulting in quantitatively 

inaccurate results [6]. Recently, statistical iterative methods 

incorporate an accurate physical model to reconstruct images 

directly from dual-energy measurements [7]. These approaches 

involve a highly nonlinear forward model in the maximum 

likelihood framework to model the polychromatic 

measurement, representing a complicated nonlinear 

optimization problem. The great computation cost and slow 

convergence speed significantly reduces the practicality of the 

algorithm.  

In this paper, a new image reconstruction approach for 

dual-energy CT is proposed based on a realistic polychromatic 

physical model. This method combines an analytical algorithm 

and a single-variable optimization method to solve the 

non-linear polychromatic x-ray integral model in the projection 

domain, allowing an efficient and accurate decomposition for 

sinograms of two physical basis components. In the next 

section, the physical model and reconstruction methods are 

described. In the third section, representative numerical 

experiments are presented. In the last section, relevant issues 

are discussed. 

II. METHODOLOGY 

A CT x-ray source generally emits a polychromatic spectrum 

of x-ray photons, and the x-ray linear attenuation through the 

object depends on the object material composition and the 

photon energy. After a polychromatic x-ray beam passes 

through the object, the x-ray intensity I  measured by a 

current-integrating detector can be described by the non-linear 

integral model [2]: 
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where  S E  is the energy distribution (spectrum) of the x-ray

source, and  ,r E  is the linear attenuation coefficient at an

energy E  and a spatial position r along an linear path l  

through the object. During propagation through the object, the 

x-ray photons population is statistically attenuated according to

the nonlinear equation (1).

It is well known [2, 8] that photoelectric absorption and 

Compton scattering are the two dominant x-ray attenuation 

processes in the 20 keV-140 keV diagnostic energy range. The 

resulting x-ray linear attenuation coefficient can be represented 

by [2, 8, 9]:  
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where  , AN , and A are mass density, Avogadro’s number 

(6.022×10
23

 atom/g-atom) and atomic mass respectively. The 

photoelectric atomic cross section, ph , is formulated as [10] 
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where 511 keVE  , Z is the atomic number,  is the

fine-structure constant ( 1 137 ), and er = 2.818 fm is the

classical radius of an electron.  The Compton atomic cross 

section, co , is formulated as knZ f , where knf  is the 

Klein-Nishina function: 
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With both photoelectric and Compton atomic cross sections, 

the associated linear attenuation coefficients can be expressed 

as the product of spatial-dependent and energy-dependent 

components: 
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where 
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is the spatial-dependent photoelectric component, 

 c r Z A (3b) 

is the spatial-dependent Compton scattering component, 
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is the energy-dependent photoelectric component, and 

   A knq N f  (3d) 

is the energy-dependent Compton scattering component. 

With dual energy CT, we have two distinct spectral 

measurements associated with each projection angle. Inserting 

Eqs. (3) into Eq. (1) and using the first x-ray energy spectral 

measurement, we have  
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where  c r is an initial estimation of the spatial-dependent

Compton scattering component c(r). For example, the mass 

density, atomic mass and the atomic number of water may be 

applied for the estimation of c(r). The use of the initial 

estimation  c r  can effectively enhance the accuracy of a

low-order Taylor expansion that is applied to the second 

exponential term in Eq. (4). Applying a fourth-order Taylor 

expansion, we have  
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Eq. (5) is a quartic equation, and there are analytic solutions. It 

is easy to know that the polynomial function with respect to the 

variable x  is strictly convex, typically yielding two real roots 

and a pair of conjugate complex roots. Generally, we can obtain 

the true solution, denoted as  x h y , from the prior range of

the x  value. Also, applying the second spectral measurement, 

the projection of the spatial-dependent photoelectric absorption 

distribution can be computed from the following single variable 

optimization, 
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max

min

min 2 2arg min exp . (6)y I S p y q h y d





        

Eq. (6) can be effectively solved via single variable 

optimization, such as golden section search and parabolic 

interpolation. Therefore, the projections of spatial-dependent 

photoelectric absorption and Compton scattering images can be 

effectively determined by solving Eqs. (5) and (6) 

simultaneously for every detector elements at each projection 

view. 

III. NUMERICAL EXPERIMENTS

In the numerical simulation, the x-ray imaging process was 

simulated with an x-ray tube operated at 120 kvp/200mA. Two 

x-ray energy spectra can be generated from the x-ray tube at a

single kVp setting by using the Grating Oriented Line-wise

Filtration technique [11]. The GOLF technique is a
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combination of absorption and filter gratings (placed between 

the source and  

patient/object) that are driven in relative motion that is 

synchronized with detector view acquisition. Using 

micro-technology to fabricate the gratings, the medical CT 

requirements for a large field of view, large cone angle, and 

rapid change between filtration settings can be simultaneously 

met.  

 Single-slice CT imaging was assumed and used a parallel 

beam geometry. The source-to-iso-center distance was set to 

54.1 cm and the source-to-detector distance was set to 94.9 cm. 

A Shepp-Logan-type phantom was designed to contain 9 

sub-regions that were filled with various human tissues. The 

effective atomic numbers, densities, and atomic masses in these 

sub-regions, which characterized photoelectric and Compton 

cross-sections, are listed in Table 1. The phantom diameter was 

set at 440 mm and the phantom was placed at iso-center. The 

phantom was discretized into 512×512 square pixels. 

Then, energy-dependent linear attenuation coefficients were 

synthesized according to Eq. (3). The projection datasets were 

generated for 180 views over a range of 180
°
 based on Eq. (1) 

and using the two energy spectra shown in Fig. 1. By 

interpolation methods, low-energy data and high-energy data 

were well aligned at each projection view. The projection data 

were corrupted by Poisson noise to simulate real experiments.   

The proposed algorithm was applied for reconstruction of the 

photoelectric-absorption and Compton-scattering images from 

the two projection datasets. The reconstructed 

spatial-dependent photoelectric absorption and Compton 

scattering images are in excellent agreement with the truth, the 

detailed features are quantitatively accurate, and beam 

hardening effect is basically overcome, as shown in Figs. 2-3. 

Hence, the attenuation coefficient at each energy bin can be 

computed based on Eq. (3) to achieve a monochromatic image 

reconstruction. For comparison, we also performed the 

attenuation image reconstruction based on the line integral 

model. Because of the beam hardening effect, it is observed that 

the reconstructed image with the line integral model contains 

cupping artifacts, as shown in Fig. 4.  

  

 

Fig. 2. Image reconstructions of the numerical phantom. (a) The true Compton 
scattering image, and (b) the reconstructed Compton scattering image, and (c) 

the profiles along the vertical midlines in the phantom and reconstructed 

images. 

IV. CONCLUSION 

 An image reconstruction method has been proposed to 

accurately decompose components in the physical basis for 

dual-energy CT, from which the monochromatic image 

reconstruction  can  be  obtained.  This   method  combines  an  

 

 
Fig. 1. Energy spectral distributions of the x-ray source simulated using the 
public software SpekCalc [12]. (a) The energy spectrum generated from the 

x-ray tube (120 kvp) filtered by Tin of 0.5mm thickness, and (b) the energy 

spectrum from the x-ray tube (120 kvp) filtered by Tungsten of 0.05mm 
thickness.    

Table 1. Parameters of numerical phantom 

Tissue 1 2 3 4 5 6 7 8 9 

Z 3.04 4.90 4.02 5.15 5.09 4.58 5.91 5.39 5.64 

ρ 1.00 0.96 0.99 1.07 1.06 1.03 1.20 1.06 1.10 

A 6.49 8.93 7.35 8.90 9.34 13.96 8.22 10.12 9.32 

(a) (b) 

(c) 

(b) 

(a) 
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analytical algorithm and a single-variable optimization method 

to solve the non-linear polychromatic x-ray integral model, 

allowing an efficient and accurate decomposition for sinograms 

of two physical basis components, and avoiding the beam 

hardening issue associated with the image reconstruction in 

conventional CT based  on the linear integral model. 

Numerical results have been analyzed to illustrate the merit of 

the proposed image reconstruction method. We are seeking real 

datasets to further evaluate the image quality in clinical 

applications. The proposed method is applicable to biomedical 

imaging, nondestructive testing, food inspection, and security 

screening. 
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Fig. 3. Image reconstructions of the numerical phantom. (a) The true 

photoelectric absorption image, and (b) the reconstructed photoelectric 
absorption image, and (c) the profiles along the horizontal midlines in the 

phantom and reconstructed images.  

Fig. 4.  Image reconstructions of the numerical phantom. (a) The average 

attenuation coefficient image from the phantom, (b) the reconstructed 
attenuation image based on the linear integral model, and (c) profiles along 

the vertical midlines in the phantom and reconstructed images. 

(a) (b) 

(c) 

(c) 

(a) (b) 
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