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Spectral CT reconstruction with anti-correlated
noise model and joint prior

Mats Persson* and Jonas Adler*

Abstract—Spectral CT allows reconstructing a set of material-
selective basis images which can be used for material quantifi-
cation. These basis images can be reconstructed independently
of each other or treated as a joint reconstruction problem. In
this work, we investigate the effect of two ways of introducing
coupling between the basis images: using an anti-correlated noise
model and regularizing the basis images with a joint prior.
We simulate imaging of a FORBILD Head phantom with an
ideal photon-counting detector and reconstruct the resulting basis
sinograms with and without these two kinds of coupling. The
results show that the anti-correlated noise model gives better
spatial resolution than the uncorrelated noise model at the same
noise level, but also introduces artifacts. If anti-correlations are
introduced also in the prior, these artifacts are reduced and the
resolution is improved further.

I. INTRODUCTION

A recent development of Computed Tomography (CT) tech-
nology is spectral CT, where transmission data is measured in
more than one energy channel. This can be implemented as
dual energy CT, which is available today [1]–[3], or as photon-
counting CT [4]–[10] which is not yet clinically available.
However, how spectral CT data should be reconstructed in
order to yield images of optimal clinical value is still only
partially understood.

A common way of treating spectral CT data is to perform
so-called basis material decomposition. [11] This builds on
the observation that the energy-dependent linear attenuation
coefficient µ(E) of any material in the human body can be
expressed as a linear combination of two basis functions,
f1(E) and f2(E): µ(E) = a1f1(E) + a2f2(E). If a heavy
element, such as iodine, is present in the body, its linear
attenuation coefficient must be added as a third basis function.
The objective of basis material decomposition is then to obtain
a basis image, i.e. a map of the basis coefficient ai, for each
i = 1, . . . ,M , where M is the number of basis functions
(typically 2 or 3). These basis images can be displayed to the
radiologist as-is or combined to form a beam-hardening-free
monoenergetic image.

A theoretically appealing way to obtain the basis images
is by so-called one-step inversion [12], [13], where the basis
images are estimated directly from the measured data, e.g. by
iteratively solving a maximum a posteriori (MAP) problem.
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However this approach is computationally challenging since
the forward model is nonlinear.

A more easily implementable approach is to divide the
reconstruction into two steps: In the first step, projection-
based basis material decomposition is used to estimate the
line integrals Ai(`) =

∫
`
aid` of the basis coefficients ai,

i = 1, . . . ,M , along each of the sampled projection lines sep-
arately. This yields a set of M sinograms of basis projections.
In the second step, basis images are reconstructed from these
sinograms, either with filtered back-projection [11], [14] or
with an iterative method [15]–[18], to yield M basis images.

The simplest such iterative reconstruction algorithms treat
the different basis images independently. However, there are
potential benefits to be gained from introducing coupling be-
tween the reconstruction problems for different basis images.
Such coupling can be achieved by including anti-correlations
in the noise model. The noise in basis sinograms is anti-
correlated between the different basis images, and several
authors have reported that including these anti-correlations in
the noise model of a MAP problem can reduce noise in the
resulting basis images [18]–[21]. In [21] it was demonstrated
that this gives rise to cross-talk so that an edge in one basis
image can cause an artifact in another basis image.

Another way of introducing coupling between the different
basis images is by regularizing with a joint prior. This allows
introducing the prior information that image borders in the
different basis images should be located in the same place for
different basis functions, which is a reasonable assumption in
many situations. This has been done previously for energy
selective images using matrix rank [15] and for basis images
using total nuclear variation [16], structured total variation [22]
and a joint edge-preserving regularizer [23].

The purpose of this work is to investigate the effect of
combining a coupled noise model with a joint edge-preserving
regularizer (prior) in the image domain. We investigate how
each of these two types of coupling affects the image noise
and whether they cause artifacts or not.

II. METHODS

An energy-dependent version of the FORBILD Head phan-
tom [24] was constructed by assigning the attenuation coeffi-
cient of soft tissue to the brain, that of the eye lens to the eyes,
that of blood to the hematoma and that of cortical bone to the
skeleton, all obtained from [25] and [26]. The central ventricle
was assigned the same attenuation coefficient as water but re-
scaled to density 1.045 g/cm3. An axial slice through z = 0
was used.

The CT acquisition simulation was made in a fan-beam
geometry with a linear detector array and 500 mm source-
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to-isocenter distance. The detector has 853 detector elements
with 0.5 mm spacing in isocenter, and a full (360◦) rotation
divided into 360 views was simulated.

To generate the data, maps of each material in the phantom
were forward projected. To minimize the effect of discretiza-
tion and inverse crime on the resulting sinograms, this initial
forward projection was made using high resolution (8530
detector elements and 3600 angles) and then binned to the res-
olution used for the reconstruction. These sinograms were used
to calculate the energy-dependent attenuation and the expected
number of counts λj in each energy bin of an ideal photon-
counting detector as λj =

∫ Tj+1

Tj
S(E) exp

(
−
∫
`
µ(E)d`

)
dE

where Tj is energy threshold j and S(E) is the number of
incident photons per energy. Eight energy bins were used, with
thresholds at 10, 33.2, 40, 50, 60, 70, 80 and 90 keV. Poisson
distributed counts were generated from these expected values.

A bowtie filter was simulated by letting the x-ray spectrum
S(E) vary with detector position. The filter was constructed
from measurements of the dose rate as function of fan angle on
a GE VCT scanner with medium field of view. The measured
dose profile can be found in [9], and the bowtie thickness
profile was calculated in the same way as in Fig. 3a of that
publication with the exception that the bowtie material is taken
to be Teflon in the present work and that the x-ray spectrum
model from [27] (120 kVp, 7◦ W anode) is used. In the center,
where the bowtie filter is thinnest, the half-value layer of the
beam is 6.7 mm Al and the number of photons per detector
element and each of the 360 binned view angles is 106.

From the resulting set of energy bin sinograms, two sino-
grams of basis projections A1 and A2 were calculated using
maximum-likelihood basis material decomposition applied to
each projection line separately [14]. The linear attenuation co-
efficients of soft tissue and bone were used as basis functions.

To be able to model the noise accurately in the recon-
struction algorithm, the covariance matrix of the bin images
must be known. This matrix was estimated to be equal to
the Cramér-Rao lower bound (CRLB) [28], which is given
by the matrix inverse of the Fisher matrix with elements
Fik =

∑N
j=1

1
λj

∂λj

∂Ai

∂λj

∂Ak
for independent Poisson distributed

counts in N bins with expected values λj , j = 1, . . . , N .
To mimic a real imaging situation where the ground truth is
not available, the CRLB was approximated by replacing the
expected counts λi in the expression for the Fisher matrix with
the Poisson distributed registered counts Ni in each projection
line and by using the estimated basis projections Ai resulting
from basis material decomposition.

Basis images for soft tissue and bone were reconstructed by
solving the optimization problem

min
u∈XM

‖Au− b‖2Σ−1 +R(u) (1)

where u is a vector containing all image pixel values of
both basis images, A is the forward projection operator acting
on each component separately and b is the vector of all basis
projection estimates in the projection domain for both com-
ponents. Σ is a covariance matrix in the projection domain.
Different projection lines are modelled as being independent,
but for two basis components in the same projection line, the

covariance matrix is given by the CRLB. Σ is therefore block
diagonal, built up of 2× 2 covariance matrices.

For the regularization term R(u) we use an edge-preserving
joint regularizer. There are several ways to choose such a
function. A comprehensive survey of total variation-like joint
regularizers for multi-channel images can be found in [29].
Here, we let

R(u) = λ

∫
Ω

φ(‖[∇u](x)‖)dx (2)

where ‖ · ‖ is a matrix norm and ∇u is the Jaco-
bian, [(∇u)(x)]ij =

[
∂ui

∂xj

]
(x). In this article, we inves-

tigate weighted Frobenius norms of the form ‖M‖Λ−1 =√
Tr (MTΛ−1M). φ is the Huber penalty function which is

quadratic near 0 and linear above a cutoff value [30]:

φ(x) =

{
1

2σx
2 if|x| ≤ σ

|x| − σ
2 otherwise

(3)

This function preserves edges but does not cause the stair-
casing artifacts that are common in total variation-penalized
reconstructions. In this work, σ = 0.005 was used, which is
on the same order of magnitude as the image noise level.

The matrix norm used here has the benefit of being
isotropic, meaning that it does not favor gradients in any
direction more than others. The matrix Λ is a covariance
matrix describing prior information on how gradients in the
different components are correlated with each other. Here, we
use Λ =

(
1 −c
−c 1

)
) where c ≥ 0 means that gradients in the

two different components are expected to appear at the same
places, with opposite signs. This is a reasonable assumption for
the present choice of basis functions, since a region containing
soft tissue can be expected to begin where a region containing
bone ends. The diagonal terms control the influence of each
channel and were set to 1 in thus study since we expect
approximately equal magnitudes for both channels. If another
set of basis materials was used, e.g. soft tissue and a contrast
agent, the diagonal values could be set to different magnitudes
in order to regularize one channel more than the other.

By solving (1), images were reconstructed both for the Σ
given by the CRLB (”anti-correlated noise model”) and for
Σ with off-diagonal terms set to zero (”uncorrelated noise
model”). Furthermore, two values for the constant c determin-
ing the diagonal terms in Λ were tried: c = 0 and c = 0.5,
where the latter value corresponds to a prior assumption that
gradients in the two basis images have opposite signs. For
comparison, the image was also reconstructed using filtered
backprojection (FBP) and by minimizing (1) using either total
variation (TV) regularization or the Huber penalty applied
independently to each of the two basis functions. For these
reconstructions, the projection rays were given constant weight
instead of being weighted with the CRLB.

All iterative reconstructions, except for the TV penalty, were
performed using the bfgs_solver method of ODL1. This is
an implementation of the limited memory Broyden-Fletcher-
Goldfarb-Shanno quasi-newton algorithm [31] implemented

1https://github.com/odlgroup/odl
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in python. For the TV reconstructions, the Chambolle-Pock
method was used instead. 1000 iterations were used in order
to ensure convergence. The code used to generate the recon-
structions shown in this article is available online2.

Since different choices of the regularization parameter λ are
suitable for the different reconstruction methods, reconstruc-
tions were made for a range of values. To be able to compare
the resulting images visually, a λ was then selected for each
method such that a similar noise level in the soft tissue images
was obtained for the different methods.

III. RESULTS

Figure 1 shows the dependence of the noise
standard deviation and correlation coefficient
ρ = Cov(usoft tissue, ubone)/

√
Var(usoft tissue),Var(ubone).

To get similar noise standard deviations in the different soft
tissue images (not including FBP), λ was chosen as 5 for
the TV prior, 14 for the independent Huber prior, 1.1 for the
uncorrelated model with c = 0, 1.8 for the anti-correlated
model with c = 0.0, 1.7 for the uncorrelated model with
c=0.5 and 1.5 for the anti-correlated model with c = 0.5.

The resulting reconstructed images for these choices of λ
are shown in Figure 2. An artifact-prone region of interest
(ROI) at the border of the inner ear is shown shown magnified.
In the soft tissue images, the magnified inserts are shown with
a display window centered on 0 to show the artifacts caused by
cross-talk from the bone image. Figure 3 shows a horizontal
slice through the center of this ROI, allowing resolution and
artifacts to be compared between the images. Figure 4 shows
the noise standard deviations of the bone and soft tissue images
in another ROI, in the anterior part of the brain.

IV. DISCUSSION

Figure 1(a-b) shows that the noise level for the different
varieties of the proposed method are similar for low values
of the regularization parameter λ but falls off with different
speed for higher λ. This shows the importance of selecting
λ individually for the different methods. Figure 1 shows that
the noise is strongly anti-correlated between the basis images
for low λ. This anti-correlation stems from the strong anti-
correlation between the basis sinograms. With TV and the
uncorrelated noise models, these anti-correlations decrease
only slowly with increasing regularization strength. However,
when the anti-correlations are included in the noise model,
they are strongly depressed for λ > 0. If the prior does
not include diagonal terms, the method even overcompensates
and introduces positive correlations for some values of λ.
When anti-correlations are modelled in the prior as well,
the correlation coefficient in the images is close to -0.5, in
agreement with the prior.

As seen in Figures 2 and 4, all images reconstructed
iteratively have much lower noise than the FBP images and
the contours of the eyes are readily detectable. Although λ
has been tuned so that the TV image and the four proposed
methods have similar noise levels in the soft tissue basis

2https://github.com/adler-j/spectral ct examples
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Fig. 1. Standard deviation in the basis images and correlation coefficient
between them, measured in the brain tissue ROI (shown as yellow dotted line
in Figure 2, as functions of the regularization parameter λ.
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Fig. 2. Reconstructed basis images. Columns 1 and 3 from the left are soft tissue images and the columns 2 and 4 are bone images. (a-b) Ground truth; (c-d)
FBP; (e-f) Total variation; (g-h) Independent Huber penalty; (i-j) Proposed method, uncorrelated noise model and c=0; (k-l) Proposed method, anti-correlated
noise model and c=1; (m-n) Proposed method, uncorrelated noise model and c=0.5; (o-p) Proposed method, anti-correlated noise model and c=0.5. The ROIs
for the noise measurement (yellow dashed rectangle) and for the magnified inserts (white solid rectangle) are shown in the ground truth images. Display
window: [0.95 1.05] for soft tissue and [0.4 1.2] for bone. Insert images: [-0.1 0.1] (soft tissue), [0.4 1.2] (bone).

images, the bone image noise differs, with slightly higher noise
for the anti-correlated model than the uncorrelated model and
close to zero noise in the TV image.

The FBP, TV and independent Huber reconstructions treat
the basis images as independent, and therefore these images
do not exhibit any artifacts due to cross-talk between basis
images. This can be seen on the inner-ear ROIs in Figure
2(a,c,e,g) where the soft tissue images only contain noise.
On the other hand, the proposed method, the introduction of
coupling in the basis images means that the air bubbles in the
bone image can give rise to artifacts in the soft tissue image.
With an uncorrelated noise model and c = 0 these artifacts are
very weak, but some of the air bubbles and the outer border
of the skull are visible in the soft tissue image (Figure 2(i)).
In this case, the optimization problem is separable in the two
basis components as long as the gradient norm ‖∇u‖Λ−1 is
small, but coupling is introduced by the Huber penalty function
φ when ‖∇u‖Λ−1 is large enough to reach the linear region
of φ, so that cross-talk may occur at sharp transitions.

Including anti-correlations in the noise model gives strong

artifacts in the soft tissue image where the air bubbles are dark
like in the bone image (Figure 2(k)). If instead c=0.5, i.e. anti-
correlations are assumed in the prior, strong artifacts likewise
appear but with inverted contrast, i.e. the air bubbles are
bright (Figure 2(m)). Finally, with anti-correlated noise model
and c=0.5, the above-mentioned artifacts partially cancel each
other, leaving inverted-contrast artifacts of reduced magnitude
(Figure 2(o)).

The bone coefficient profiles in Figure 3 shows that the
anti-correlated noise model gives higher resolution than the
uncorrelated noise model, at similar soft tissue noise level
(Figure 4). Changing c from 0 to 0.5 for the uncorrelated
noise model leaves resolution unchanged. However, when used
with the anti-correlated noise model, c = 0.5 gives a slightly
sharper bone image than c = 0 (Figure 3). This is in line with
the intention of improving resolution at interfaces by setting
c > 0. Despite having similar noise level in the soft tissue basis
image, all four variants of the proposed method yield better
spatial resolution than the independent Huber method, as can
be seen from the high-resolution pattern in the left part of the
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the image center. (The different reconstructions are divided into two plots for
each basis function, for clarity.)
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Fig. 4. Noise standard deviation in the brain tissue measured in the ROIs
shown as yellow dashed rectangles in Figures 2(a-b).

image and from the air bubbles in the right part. For the images
reconstructed with the independent Huber penalty, the fact that
the projections are not weighted with the CRLB causes over-
regularization of the bone image, leading to a very low noise
level but also causes the air-bubble pattern to disappear.

V. CONCLUSION

Using an anti-correlated noise model gives better resolution
than an uncorrelated noise model for equal noise level in the
soft-tissue image, but this improvement comes at the cost of
artifacts due to cross-talk between basis images. However,
if anti-correlations are modelled in the prior as well, these
artifacts are reduced and the spatial resolution is further
improved.
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