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Abstract— The goal of this paper is to evaluate an analytic spiral 

cone-beam CT (CBCT) algorithm for spectral CT to provide a 

fair comparison platform for the state-of-the-art iterative 

reconstruction algorithms.  Considering the fact that a narrow 

energy channel has high noise which degrades the imaging 

quality of spectral CT, an adaptive maximum a posterior (MAP) 

sinogram restoration algorithm is first used to reduce the noise 

and then a three dimensional weighted Feldkamp-Davis-Kress 

(FDK) algorithm is implemented to reconstruct the spectral CT 

images at different energy channels. Our numerical results show 

that the analytic reconstruction approach is fast and it can 

provide high spatial resolution, high contrast resolution and high 

signal-noise-ratio (SNR) with higher helical pitches. This makes it 

possible to serve as a platform to evaluate the state-of-the-art 

iterative spectral CT algorithms. 

Keywords—Spectral CT, spiral CBCT, adaptive MAP, weighted 

FDK. 

I. INTRODUCTION 

Recently, spectral CT with photon-counting detector has 

gained considerable interests and become a hot topic [1]-[3]. 

The state-of-the-art photon-counting detectors usually divide 

the energy range of a spectrum into several channels. Because 

each sub-spectrum or energy channel can be used to 

reconstruct an image like the conventional CT, the spectral CT 

can be viewed as a natural extension of the conventional CT 

along the spectral dimension, and the additional spectral 

information can help to distinguish materials and improve the 

contrast-to-noise ratio (CNR). Unfortunately, as far as the 

authors know, a comprehensive evaluation of analytic 

reconstruction algorithms for spectral CT has not been 

reported. This motivates us to evaluate analytic spiral cone-

beam CT (CBCT) algorithms to provide a fair comparison 

platform for iterative spectral CT reconstruction algorithms.     

An obvious limitation of spectral CT is that the number of 

photons available in each energy channel is much smaller than 

the total number of photons detected, and image noise within 

each channel is dramatically increased. Consequently, how to 

reconstruct high quality CT images from noisy projections has 

recently become a hotspot in the spectral CT field. Although 

different algorithms have been developed to reconstruct high 

quality spectral CT images, there is no unique platform for 

performance comparison. To resolve this problem, we aim to 

implement and evaluate an analytic reconstruction platform. In 

this paper, an adaptive maximum a posterior (MAP) sinogram 

restoration algorithm is first implemented to reduce noise. 

Then, a helical weighted Feldkamp-Davis-Kress (FDK) 

spectral CT algorithm is employed to reconstruct images from 

denoised projections. Finally, comprehensive experiments are 

performed to evaluate the performance of this analytic 

reconstruction algorithm for spectral CT.  

II. SPECTRAL CT DATA AND NOISE MODEL 

A. Spectral CT Data

For a photon-counting detector, the comparator for each 

channel can be set as a threshold level. By a simple post-

processing step of subtraction, the received photon intensity 

can be modeled for a given energy channel defined by two 

energy thresholds (
1 20 T T  )
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where E is energy, 
0 ( )b E is the photon intensity emitting 

from the x-ray source, ( )D E  is the detector efficiency, 

1 2( , )b T T is the received photon intensity by the detector, L

represents the x-ray path, and ( , )E l  is the attenuation map 

depending on energy E .     

Similar to the conventional CT, a logarithm operation can 

be applied to Eq.(1) to approximately obtain 
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where ( , )E l denotes weighted average value of the 

attenuation coefficient and E  denotes the equivalent energy in 

the interval  1 2[ , ]T T . Eq.(2) is the well-known radon transform 

model and it has been widely accepted in the CT field for 

spectral CT [4]. 

For a given energy channel 
1 2T E T  , noisy CT

sinogram measurements can be expressed as a discrete vector 

1 2=( , , , , , )i Iy y y yy , where iy represents the i
th

line integral 

through the object for a given scanning geometry, and I  is the 

number of total measurements. These measurements are 
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related to the recorded detector measurements, 

1 2=( , , , , , )i Ib b b bb , by the Equation (2). 

B. Noise Model 

A poisson noise model for pre-log data ib
 
can be written as   

          
  0 exp ( , )di

i i
L

b Poisson b E l l r 
               

(3)

 
where  0

ib  is the X-ray source intensity for ith ray, and i
r  

denotes the background contributions from factors such as 
scatter and crosstalk. After a negative log operation, the post-

log data i
y can be approximately viewed as a Gaussian 

random variable [5]. The relationship between the data mean 
and variance is described by  

                           
2 exp( / )i i if y                                  (4) 

where i
y and 

2

i are the mean and variance of the ith ray 

integral, if  is a parameter adaptive to detector bins and  are 

scaling parameter which is object-independent but completely 
determined by the system settings. 

III. ADAPTIVE MAP SINOGRAM RESTORATION                        

Image restoration problem of spectral CT projection for each 
channel can be formulated as a minimization problem [5], and 
it also can be considered as an MAP with a quadratic prior 
potential function estimation of the noisy sinogram  
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The iterative updating formula for the solution of (5) by 

the Gauss-Seidel algorithm is given by [6] 
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where n represents the iterative number , i

N  represents a 

neighborhood of six nearest volxels centered on 

i
p ,

1

i
N denotes the upper, left and front neighbors,  

2

i
N   

denotes the lower, right and back neighbors, and ij
 is the 

smoothness parameter which plays an important role in the 
smoothness process. Here, we set adaptive smoothness 
parameters by 
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where 

2

0 iK k  is the noise level parameter [7], | |
i

p is the 

gradient magnitude of voxel ip  in the 3D projection domain 

and ij  is 1. In the implementation, the variance 
2

i
  and 

gradient | |
i

p  are updated according to the new updated 

projection image per iteration. 

IV. FDK-TYPE SPECTRAL CT RECONSTRUCTION  

After the noisy spectral sinogram data are restored, a 3D-
weighted helical FDK algorithm [8] is selected for analytic 

spectral CT reconstruction. It is an improved version of the 
first spiral CBCT algorithm [9].  The algorithm is 
implemented by assuming a flat panel detector, and a 
rebinning procedure is used to convert the cone-beam data into 
cone-parallel geometry. The algorithm can be expressed as 

ˆ( , , )f x y z  

          
max

min
3 ( , , ) , ( , , ), ( , , , ) dPF

D t P t x y z v x y z



       ,       (8) 

where    min max max, 2 ,2      is the view angle range 

over which the projection data are used to reconstruct an 
image slice intersecting the helical source trajectory at view 

angle  0 min max min= + - / 2     , and max  is the half maximun 

fan angle of an x-ray beam. Projections PFP are gained by pre-

weighting and filtering the parallelly rebinned projection PFP  

                   ( , , ) cos ( , , ) ( )PF PFP t v P t v h t     .               (9) 

Here,  is the view angle, t  is the orthogonal distance 
from the iso-ray to parallel beam scanning geometry, and v  is 
the row coordinate of projections on the detector, 

                         ( , , ) cos sint x y y x    ,                        (10) 
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                           ( , , ) cos sinb x y x y    .                       (12) 

In Eq.(11), R is the source trajectory radius and DO is the 
distance from detector center to object center. In Eq.(9), the 
pre-weighted factor is 

   

2 2 2
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In Eq.(8), 3 ( , , )D t    is the 3D weighting function  
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where  and c are the cone angles corresponding to a direct 

ray and its conjugate ray, respectively, h  is the normalized 

helical pitch defined by  /h H L with L being the height of 

the detector along the z -direction at the iso-centre,  and k  is a 

parameter varying over different helical pitches.  

In Eq. (14), the 2D weighting function
 2 ( , )D t   can be 

constructed in the case of cone-parallel geometry 

2 2( , ) ( , ) 1,D Dt t       

                       

(15)

 where    and t are the view angle and orthogonal iso-

distance of the ray that is conjugate to the ray with view angle 

  and orthogonal iso-distance t , respectively.  

In Eq. (8), if we change the 3D weighting function into 2D 

weighting function 2 ( , )D t  ,we can gain the 2D-weighted 

helical FDK algorithm. 

V. RECONSTRUCTION RESULTS  

A. Experimental Setting 

To evaluate the performance of analytic reconstruction 
algorithm for spectral CT, a cylindrical phantom is designed to 
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include multiple materials. The diameter and height of the 
cylindrical are 20 cm and 10 cm, respectively. Its cross section 
is shown in Fig. 1.  Assuming the center of this cylindrical is 
the origin of 3D coordinate system, we arrange 14 holes and 
each hole contains one material. While the objects 1-8 are 
used to evaluate the discriminative capability of spectral CT, 
the objects 9-14 are used to measure the spatial resolution of 
reconstructed images. The concentration percentages of base 
materials are calculated by weight and the linear attenuation 
coefficients of all the materials are shown in Fig. 2.  

Fig. 1. Transaxial sketch of the cylindrical phantom. 

Fig. 2.  Attenuation coefficients of 8 employed materials. 

     The x-ray tube voltage is assumed as 120kVp and the 
spectrum is shown in Fig 3. Taking into account the material 
k-edges in this phantom, which are iodine (33keV), barium
(37.4keV), gadolinium (50.2keV) and gold (80.7keV), six
channels are selected to make the total photons of each
channel as equivalent as possible

1 15.5keV 32.5 e{ }k VWE  ,
2 33.5keV 36.5 e{ }k VWE  , 

3 37.5keV 42.5 e{ }k VWE  ,
4 43.5keV 49.5 e{ }k VWE  ,  

5 50.5keV 56.5 e{ }k VWE  , 
6 81.5keV 119.5 }V{ keWE  . 

Fig. 3. Source photon emission spectrum used for numerical simulation. 

To evaluate the weighted helical FDK algorithm for 
spectral CT, helical cone-beam data for each channel is 
simulated assuming a spectral CT geometry. The distance 
from the source to the center of the phantom is 75cm and the 
distance from the source to the detector is 15cm. The flat 
panel detector consists of 300×20 detector cells and each of 
which covers an area of 0.1×0.1cm

2
. The phantom consists of 

256×256×128 voxels. The photon count per ray is 
proportional to the source photon emission spectrum and the 
projections are collected according to Eq.(2). Here 360 
projections are generated for one turn of the helical scanning. 
To evaluate the accuracy of the weighted FDK algorithm for 
higher helical pitch, the images which are reconstructed from 
noise-free sinogram with a low helical pitch of 0.5 in the cone-
parallel geometry using no weighted helical FDK algorithm as 
reference. 

B. 3D View Weighting versus 2D View Weighting

To evaluate the accuracy of the 3D weighted FDK algorithm 
for higher helical pitch, the 2D and 3D weighted FDK 
algorithms are employed and the projections are assumed 
noise-free. First and second rows of Fig. 4 are the transaxial 
and coronal images of the cylindrical phantom reconstructed 
from the 2D weighted helical FDK at 1, 3, 5

th 
energy channels 

with a helical pitch of 1.5, and the third and fourth rows of 
Figure 4 are the corresponding images reconstructed by the 3D 
weighted helical FDK. Table 1 gives the normalized root 
mean squared error (NRMSE) and signal-noise-ratio (SNR) 
for different energy channels with 2D/3D weighted FDK at 
pitch 1.5. 

Fig. 4. Cylindrical phantom images reconstructed by the 2D/3D weighted 

helical FDK algorithms with a helical pitch of 1.5. From left to right 
columns, the images are reconstructed from 1st, 3rd ,5th channels. The 

first and second row images are respectively the transaxial and coronal 

planes of 2D view weighting results, and the third and fourth rows are 
the counterparts of 3D weighting results. The display window is [-

500HU,1500HU] 

TABLE I.  NRMSE AND SNR OF RECONSTRUCTED IMAGES IN 

DIFFERENT CHANNELS WITH 2D/3D WEIGHTING FDK AT PITCH 1.5 

channel 
NRMSE SNR 

2D 3D  2D  3D  

1 0.1824 0.0063 18.15 47.33 

2 0.1820 0.0062 18.16 47.44 

3 0.1788 0.0070 18.01 46.18 

4 0.1825 0.0061 18.20 47.74 

5 0.1835 0.0058 18.25 48.24 

6 0.1897 0.0039 18.50 52.21 
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From Fig. 4, we can see that the shading artifacts of 2D 
weighted FDK is serious at high helical pitch. However, the 
3D weighted FDK algorithm can suppress those shading 
artifacts and provide better reconstructed results at higher 
helical pitch. Table 1 further confirms the 3D weighted helical 
FDK algorithm is robust with respect to the helical pitch.  

C. Noise Characterization 

In practical applications, measurement noise is unavoidable.  
To test the noise characterization of the 3D weighted helical 
FDK algorithm against data noise, Poisson noises are 
generated with the expectation being the corresponding 
received noise-free photon numbers.  

Table 2 gives the corresponding NRMSE and SNR of the 
reconstructed images from noisy  and denoised sinograms. 
From Table 2, we can see that the photon noise has greater 
influence to lower energy channels compared to higher energy 
channels. Fig.5  gives the transaxial images in the first three 
energy channels reconstructed from denoised sinograms by 
using the aforementioned adaptive MAP method with helical 
pitches of 1.5. Table 2 and Fig. 5 show that the analytic 
spectral CT reconstruction is stable with respect to noisy 
sinograms. We also can see that the results reconstructed from 
denoised sinograms have lower NRMSE and higher SNR 
compared to the ones from noisy sinograms. 

TABLE II.  NRMSE AND SNR IN DIFFERENT CHANNELS WITH 3D 

WEIGHTING FDK AT PITCH 1.5 FROM NOISY PROJECTIONS 

channel 
NRMSE SNR 

Noise Denoise  Noise Denoise  

1 0.0219 0.0182 36.56 38.15 

2 0.0149 0.0128 39.91 41.19 

3 0.0112 0.0104 42.06 42.68 

4 0.0087 0.0083 44.67 45.09 

5 0.0082 0.0079 45.20 45.60 

6 0.0061 0.0058 48.33 48.84 

 

(a)                                 (b)                                (c) 

Fig. 5. Transaxial images reconstructed from denoised projections with a 
helical pitch of 1.5. (a)-(c) are reconstructions from the first three energy 

channels. The display window is [-500HU,1500HU].  

 

VI. DISCUSSION AND CONCLUSION 

In this paper, we mainly focus on the evaluation of an analytic 
reconstruction algorithm for spectral CT with high helical 
pitches. First, an adaptive MAP sinogram restoration statistical 
algorithm is used for denoising in the projection domain. Then, 
a 3D weighted helical FDK algorithm is used to reconstruct 
the spectral CT images, and satisfactory reconstruction 
accuracy is achieved with high pitches. While the 2D 
weighted FDK can be used to deal with half-scan and full scan 
problem, 3D weighted FDK can significantly improve the 
reconstruction accuracy at larger helical pitch, and the 

reconstruction accuracy of 3D weighted FDK depends on the 

parameters k  in Eq. (14). Generally speaking, a greater value 

of k  should be set for a large helical pitch. In our numerical 

simulations, k is empirically selected as 30 for pitches 1.5. 

Because spectral CT can capture more information in different 
spectral channels simultaneously, it can provide much richer 
information rather than the traditional gray-scale CT.  

In conclusion, we have evaluated an analytic helical 
reconstruction approach for spectral CT. Because this 
approach is fast and it can provide high spatial resolution, high 
contrast resolution and high SNR with higher helical pitches, 
it can serve as a platform to evaluate the state-of-the-art 
iterative spectral CT algorithms. We are working to link this 
platform with the new data format developed by Dr. 
McCollough’s group at Mayo Clinic, and the corresponding 
software package will be released soon. The numerical results 
have confirmed the merits of analytic spectral CT 
reconstruction in terms of both qualitatively and quantitatively 
analysis.  
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