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Abstract— The understanding of the image properties
produced by a medical imaging system is critical to effective
interpretation of the diagnostic images they produce.
Quantitative analysis of image properties like spatial resolution
can be complex in computed tomography when advanced
model-based reconstruction methods like penalized-likelihood
estimation are used since spatial resolution is dependent
on patient anatomy, x-ray exposures, and location in the
field of view. Previous work [1] has derived mathematical
expressions for the local impulse response which quantifies
spatial resolution and permits prospective analysis, control,
and optimization of the imaging chain including tuning of
the reconstruction algorithm. While previous analysis is
appropriate for many diagnostic systems, it relies on an
idealized system model that ignores any projection blur. Newer
devices including cone-beam CT systems that utilize flat-panel
detectors can experience significant system blur both due to
light spread in the scintillator and due to extended x-ray
focal spots. This work introduces a derivation of the local
impulse response for penalized-likelihood reconstruction where
projections are subject to system blur. We investigate the new
local impulse response expression in both simulation studies
and in physical test-bench experiments, demonstrating the
accuracy of this new resolution predictor.

IndexTerms–Local impulse response, penalized likelihood
reconstruction, flat panel cone-beam CT

I. INTRODUCTION
The past decade has seen rapid development in computed

tomography (CT) both in hardware implementation and
reconstruction algorithm design. Cone-beam CT (CBCT)
systems based on flat-panel detectors have found widespread
use in a number of medical applications including dedi-
cated point-of-care scanners, mobile devices, and interven-
tional imaging systems. Model-based iterative reconstruction
(MBIR) algorithms are also finding increased clinical use and
are an important tool for dose reduction in diagnostic CT.
Such algorithms are also finding application in flat-panel-
based CBCT.

MBIR approaches often take advantage of a statistical
model of the measurement data to weigh the relative contri-
bution of different measurements. These statistical weights
are data-dependent and can lead to varying image prop-
erties in reconstructions of different patients and different
anatomical sites. For example, in penalized-likelihood (PL)
reconstructions of tomographic data, the interaction between
the data fidelity term (which contains the statistical model)
and a standard shift-invariant penalty term leads to resolution
properties that are shift-variant. In this scenario, more blur
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is typically induced in regions where data fidelity is lower
(e.g. near more dense tissues in CT) and less blur where data
fidelity is higher (e.g., at patient skin-air boundaries).

This behavior was examined analytically by Fessler in [1]
where expressions for local noise and resolution properties
were derived based on Taylor approximation. Those expres-
sions characterize the dependence of image properties on the
position in the field of view, the patient anatomy including
the local attenuation values, the x-ray technique (i.e., ex-
posure), the system geometry, and the regularization/penalty
used in the penalized-likelihood objective function. Recent
work has explored highly computationally efficient methods
for computing the local noise and resolution properties.[2]

Such analytic tools permit the prospective prediction of
image properties without having to explicitly reconstruct
tomographic data. With this ability, one can optimize data
acquisitions and reconstruction strategies (e.g. regularization)
for specific goals and consistent behavior across scanning
conditions. Previously, such predictors have been used to
enforce uniform spatial resolution properties in reconstruc-
tions [3] or to maximize imaging performance through
computations of the local detectability index (which is a
function of local noise and resolution) for specific imaging
tasks through customization of the source-detector trajectory
[4], modulation of the tube current as a function of rotation
angle [5], and space-variant design of regularization. [6], [7]

To our knowledge, all previous work on the prospective
prediction of imaging properties for MBIR has presumed an
idealized system without system blur. More specifically, it is
assumed that the x-ray source is small relative to detector
pixels so that focal spot blur is negligible; and that there
is little to no sharing of signal between detector pixels.
While this assumption has historically worked well enough
for current clinical scanners, this may be a poor assumption
for high-spatial-resolution CT applications and CBCT sys-
tems based on flat-panel detectors. In particular, focal spot
effects may be more important for higher resolution systems
and the assumption of no signal sharing between pixels is
inappropriate for many flat-panel detectors. For example, in
indirect detection flat panels, there is a scintillator layer that
converts single X-ray photons into many visible photons,
which typically spread spatially over multiple pixels. This
light spreading is often relatively large compared to the pixel
size, meaning that detector blur can have a significant impact
on the overall resolution properties of a CBCT system. [8]

In this work, we focus on the derivation of a predictor for
the spatial resolution properties of PL-reconstructed CBCT
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data with non-ideal detectors exhibiting spatial blur. While
recent work has attempted to model such blur in the forward
model as part of the reconstruction [9], this work is con-
centrated on predicting resolution properties for a standard
reconstruction forward model (without blur) that is applied
to data that contains systemic blur. We follow the general
general methodology presented by Fessler[1] to derive the
prospective predictor, and then verify its accuracy in both
simulation and physical test-bench studies.

II. METHODS

A. Penalized-Likelihood Reconstruction

While there are many different MBIR approaches that have
been proposed, PL methods have a number of advantages
including the weighting of individual measurements by their
statistical fidelity, a variety of fast algorithms for iterative
estimation, and their relative amenability to mathematical
analysis. Unlike direct analytical reconstruction methods,
PL reconstruction is typically posed as the solution of an
implicitly defined objective function, and generally does
not have a closed-form expression. Consider the following
implicitly defined estimator:

µ̂ = arg max
µ

Φ(µ, y) (1)

where µ ∈ RN×1
+ denotes a vector of attenuation coefficients

representing the image volume and y ∈ RP×1
+ is the vector

of tomographic measurements made by the CT scanner. The
estimate, µ̂, is the image that maximizes the value of the
objective Φ. For a PL objective

Φ(µ, y) = L(µ, y)− βR(µ) (2)

L(µ, y) =
∑
i

yi log ȳi(µ)− ȳi(µ) (3)

where L is the likelihood function and R is a roughness
penalty whose relative strength is controlled by the parameter
β. In this work, we focus on quadratic penalties on pairwise
voxel differences. Equation (3) is the likelihood function
presuming Poisson measurement data which is a function of
the mean measurement model ȳ. The typical forward model
for ȳ, which we will adopt here for reconstruction, is

Ȳrecon(µ) = I0 exp(−Aµ) (4)

where A ∈ RP×N+ is ideal forward-projector system matrix
and I0 denotes a scalar gain term specifying the bare-beam
fluence level. It is important to differentiate between the
idealized reconstruction model and the true physical model
through which data is obtained. For example, a more accu-
rate physical model will include system blur. For example,
introducing a blur model for projection data acquisition, one
may write

Ȳacq(µ) = BI0 exp(−Aµ) (5)

where B ∈ RP×P denotes a blur operator. We seek to predict
resolution properties of images reconstructed using PL with
the traditional forward model of (4) but with data that was
obtained with blur in the detection process as in (5).

B. Spatial Resolution in Penalized-Likelihood Images

It is well known that PL reconstruction of CT data with
standard space-invariant penalties yields nonuniform resolu-
tion properties that are dependent on the x-ray technique,
geometry, and patient anatomy. However, with quadratic
penalties resolution properties are locally linear and shift-
invariant - making a local impulse response a valuable
analytic tool. Local impulse response, by definition, is the
relative change of reconstructed result from a small local
increase in ground truth. The local impulse response of the
jth voxel can be written as,

lj = lim
δ→0

µ̂(ȳ(µ+ δej))− µ̂(ȳ(µ))

δ
=

∂

∂µj
µ̂(ȳ(µ)) (6)

= ∇yµ̂(ȳ(µ))
∂

∂µj
ȳ(µ) (7)

where ej denotes a vector with all zeros except for the jth

element that is unity.
In PL reconstruction, µ̂ is estimated with the forward

projection model (without blur) in (4) but with Ȳacq as its
argument. Thus, the first term in (7) is written as

∇Ȳacq
µ̂(Ȳacq) = [−∇20Φ(µ, Ȳacq)]−1∇11Φ(µ, Ȳacq) (8)

= [ATD[I0exp(−Aµ̂(Ȳacq))]A + R]−1AT

(9)

where R = ∇2R(µ) the Hessian of the penalty and D{·}
denotes an operator that puts its vector argument on the
diagonal of a matrix. The second term in (7) may be written

∂

∂µj
ȳ(µ) =

∂

∂µj
Ȳacq(µ) (10)

= −BD{I0 exp(−Aµ)}Aej (11)

Combining (9) and (11) into (7) yields

lj = [ATWA + R]−1ATBW0Aej (12)

where the two diagonal weighting operators are defined as

W = D[I0exp(−Aµ̂(Ȳacq))] (13)
W0 = D[I0exp(−Aµ)] (14)

This expression differs from previous formulations of the
local impulse response with the addition of the blur operator,
B, before the weighting, W0 on the right side of the equation
due to its presence in the physical forward model in (11). In
contrast, B does not appear in the inverse operation of (9)
since the reconstruction model does not include knowledge
of system blur. The diagonal weighting operators above are
slightly different in form since (13) are weights based on the
reprojection of the reconstruction of blurred measurements,
whereas (14) does not have this added blur. In practice these
additional blurs have a minor effect on the overall estimate
since the operator is sandwiched between projection and
back-projection operation. In our investigations we approx-
imate both weighting terms using a “plug-in” approach by
substituting the actual measurements.
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Although an explicit closed-form expression of local im-
pulse response is achieved, the matrix inverse in (12) is com-
putationally cumbersome. Thus, to solve for the response,
one can either apply iterative algorithms like conjugate-
gradient to estimate (12), or use Fourier methods to give
an approximate solution.[3] Specifically, we may compute

lj = F−1{ F{ATBWAej}
F{ATWAej + Rej}

} (15)

where F and F−1 denote discrete 3D Fourier transforms
and inverse transforms, respectively. In this work, we will
investigate the accuracy of the expression in (15).

C. System Blur Measurement

To validate the expression for local impulse response in
a system with a realistic blur model, we measured blur in
a physical flat-panel based cone-beam CT (CBCT) system.
There are two major sources of blur in most CBCT systems
with indirect detectors: 1) blur due to light spread in the
scintillator, and 2) focal spot blur due to an extended x-ray
focal spot. We choose to decompose the total system blur
B into two separable terms, detector blur Bd and focal spot
blur Bs. [11]

B = BdBs (16)

Strictly speaking, this model breaks down for larger objects
since source blur is depth-dependent. However, when con-
sidering the local impulse response about a location j near
the center of rotation, this model is appropriate. (One can
imagine extending this idea to use a view-dependent blur
that accommodates a varying depth-dependent blur for a
particular location if it is not near the center of rotation.)

Following [10], we use a tungsten plate (50 mm × 50 mm
× 5 mm) to measure systemic blurs in the projection data via
an edge response. A presampled edge spread function (ESF)
is estimated and differentiated to compute the line spread
function (LSF). One-dimensional Fourier transformation of
the LSF yields a one dimensional modulation transfer func-
tion (1D-MTF) associated with the particular angulation of
the tungsten plate. To characterize resolution properties along
different orientations, we rotated the tungsten plate over a
number of different angles to form additional 1D-MTFs. For
estimates of blur due to the detector, the tungsten plate was
placed directly on the face of the detector panel (minimizing
focal-spot blur). To estimate the total system blur (including
both source and detector effects), the tungsten plate/edge was
placed at the center of rotation to estimate the projection blur
expected for the object.

D. Validation of the Local Impulse Response Analysis

We evaluate the new local impulse response expression
in (15) in two experiments: 1) a simulation experiment
where the system blur is exactly known; and 2) physical
experiments using a CBCT test-bench. Both experiments use
the penalized-likelihood estimator described above in (1) and
(3) with a quadratic penalty and first-order neighborhood
for pairwise voxel differences. The separable paraboloidal

(a) Cross-section of the digital phantom used in simulation studies.
The phantom mimics a physical phantom with a PVC shell,
water interior, and three tungsten wires. Attenuation coefficients
of material are given. Height of the phantom is 50 voxels.

(b) Physical phantom with three tungsten wires attached to green
3D-printed holder. Shown empty but water-filled for data acquisi-
tion.

(c) Test bench setup.

Fig. 1: Phantom designs in simulation and bench study.

surrogates (SPS)[12] algorithm is chosen to minimize the PL
objective function using 900 iterations and a single subset.
All reconstructions used a voxel size of 0.2 mm × 0.2 mm
× 0.2 mm. Algorithms were coded in MATLAB and include
external calls to CUDA-based libraries implementing sepa-
rable footprints [13] projectors/backprojectors. A 51 voxel ×
51 voxel × 51 voxel region of interest (ROI) is applied to
contain the blur from impulse in both study.

1) Simulation Study: For the simulation study, we adopted
the digital phantom shown in Figure 1a and generate
noiseless projection data using the physical forward model
in (5) with following geometry parameters: source-to-axis
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(a) Detectors resolution properties along different orientations. Leg-
end shows angles between edge and vertical grid on detectors panel. (b) Comparison between total system blur and detector blur.

Fig. 2: MTF Measurements showing blur associated with data collection in the CBCT test-bench.

distance (SAD) = 1107mm, source-to-detector distance
(SDD) = 868 mm. X-ray fluence level was set to I0 = 18800
photons in the bare beam. The simulated blur model used
the detector blur results from the test-bench experiment.
The FWHM width of the measured detector point spread
function (PSF) was approximately 0.8 mm and pixel size was
0.278 mm×0.278 mm. We repeated PL reconstructions with
and without an impulse in the digital phantom to directly
estimate a local impulse response according to (6). This
evaluation served as the ground truth response and was
compared with the derived local impulse response of (15)
over a range of regularization values (sweeping β between
104 and 106).

2) Test Bench Study: The ability to predict resolution was
also evaluated on a physical CBCT test-bench. The test bench
consists of a flat panel detector (1536 × 1536 pixels, pixel
size 0.278 mm×0.278 mm), X-ray tube, and a rotating stage
which holds objects as shown in Figure 1c. The geometry
matched the simulation experiments.

To investigate local spatial resolution properties in phys-
ical data, a water-filled cylinder served as a phantom
and is shown in Fig. 1b. Three tungsten wires (diameter
φ = 127 µm) were fixed in a water-filled cylinder container
(diameter φ = 16 cm). These wires are substantially thinner
than one voxel making them good approximations to im-
pulses for local resolution estimation. To isolate the system
response of a wire, the background water value is calculated
within a ring surrounding the wire and subtracted from
reconstructed volume. Over 20 slices containing the wire
stimuli, we use Gaussian fitting to find the center of the wire.
The average (axial) in-plane response over all slices was
computed to reduce noise effects. This average represents
a 2D line response function which may be compared with
a line response formed from the analytic predictor in (15)
by integrating the predicted 3D-PSF in the z-direction. An
additional circular blur of 127 µm corresponding to the
wire diameter was applied to predictions with and without
modeled blur for comparison. Because the attenuation of the
wire is not known exactly, measurements are normalized by
ensuring the integral of the line spread function is unity.

III. RESULTS

A. System Blur Measurement
The results of the physical test-bench blur characterization

are shown in Figure 2a. The computed 1D MTFs for five
different angles are plotted. We note that the MTF does
not vary significantly with orientation suggesting a highly
isotropic detector response. Similar investigations across the
face of the panel suggested a high degree of detector blur
uniformity. For the following simulation investigations these
measured MTFs were averaged to form a truly isotropic
MTF.

Test-bench experiments used a 0.4 mm focal-spot. Taking
magnification into account, we would expect a projection
blur of approximately 0.12 mm for an object at the center
of rotation. This additional blur due to the source is evident
in the MTF measurements made at the center of rotation. In
Figure 2b, the MTF for total blur falls off slightly faster than
the MTF representing detector blur alone. While source blur
effects are relatively small in this test-bench configuration,
the (angularly averaged) total blur is used in the following
physical data investigations for resolution prediction.

B. Simulation Study
Fig. 3 shows resolution estimation results for a peripheral

location in the simulation phantom. Three different PL
regularization parameter strengths were applied from 104 to
106. 2D slices of the 3D PSF and 3D MTF are shown, as
well as 1D horizontal profiles through each of these function.
Each sub-figure containing a 2D function shows the predicted
estimation result on the left side and measurement outcome
on the right side for comparison. These PSF and MTF images
show very good symmetry indicating that the prediction
is consistent with measurement. From the profiles, we can
see excellent agreement between measurement and the new
predictors that include detector blur. Traditional predictors
(without a detector blur model) deviate substantially from
the measured results. When regularization strength increased,
the PL reconstruction exhibits increased overall blur which
reduces this mismatch since resolution properties are domi-
nated by reconstruction blur.
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(a) Predicted PSF estimates and direct measurements within a zoomed
15 voxel×15 voxel region of interest.

(b) Predicted MTF estimates and direct measurements.

Fig. 3: Simulation study results. Each sub-figure in the upper row shows the prediction on the left and measurement on the
right. The lower row shows central horizontal profiles of the 2D results above. Predicted results using previous derivations
without a blur model are shown (in green) in the profile plots. The same impulse location is shown for three different
regularization parameter (β) values.

Fig. 4: Test bench study results. PL reconstruction penalty
strength β from left to right columns:103, 104, 105. For line
spread function estimates for varying β, summations over the
center 5 voxel×5 voxel, 9 voxel×9 voxel, 17 voxel×17 voxel
regions are normalized to 1 respectively. Upper: comparison
between line spread function estimation and measurement.
Zoomed in to center 15 voxel×15 voxel region.Lower: center
row profiles comparison between prediction and measure-
ment.

C. Test Bench Study

Preliminary resolution prediction results for the test-bench
are shown in Fig. 4. 2D line spread functions for wire closest
to the PVC wall are shown for three different regularization
parameters. The 2D functions are organized in the same way
as in simulation study with the left half showing the predic-
tion and the right half showing the measurement. Like the
simulation study, the results are highly symmetric suggesting
good agreement between the predictions and measurements.
The horizontal profiles through the measurements and predic-

tions are also shown. We see that including the system blur
yields a line spread function that is closer to the measured
value than the traditional predictor that does not include blur.
In these results there is still a small mismatch (most notable
at the peak of the line spread function). The measured blur
is still larger than the predicted blur, suggesting that there is
residual un-modeled blur in the physical CBCT test-bench.
We conjecture that this residual blur is due to slight errors in
the geometric calibration of the system. This slight mismatch
is the subject of ongoing investigations.

IV. DISCUSSION

In this paper we presented a novel derivation of the local
impulse response for PL reconstruction that includes physical
system blurs including non-ideal detectors and source blur
that has been ignored in previous derivations. The resolution
predictor is similar to previously investigated forms and can
be evaluated quickly using local Fourier methods. The ap-
proach takes into account the system geometry, measurement
statistics, and the object-dependence (but requires only an
estimate of the projection data for computation). Measured
versus predicted results are nearly identical in simulation
studies. In physical testbench experiments, preliminary stud-
ies show that the new resolution predictor yields quantitative
measures of spatial resolution that are closer than previous
predictors that do not model inherent system blurs. We
conjecture that residual mismatches between predictions and
measurements are the result of un-modeled blurs resulting
from an inexactly known geometry.

This work is an important first step in applying predic-
tors of imaging performance in real flat-panel-based CBCT
systems. Such predictors are critical for establishing reliable
reconstructions (e.g., consistent resolution properties across
acquisition methods, x-ray techniques, and patient sizes)
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as well as more complex system optimization using task-
based image quality metrics. The latter optimization methods
generally require predictors for both the spatial resolution
and noise properties of the imaging system. We plan on using
a similar development to extend this work to noise prediction
(e.g., of the local noise power spectrum) for devices with
system blur. Thus, this work represents an important building
block for the application of MBIR in real CBCT systems for
reliable operation and future optimization.
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