
Simple and efficient raycasting on modern GPU’s
read-and-write memory for fast forward projections

in iterative CBCT reconstruction
Jonas Dittmann∗, Randolf Hanke∗†

∗Lehrstuhl für Röntgenmikroskopie, Universität Würzburg, Germany
†Fraunhofer EZRT, Fürth, Germany

jonas.dittmann@physik.uni-wuerzburg.de

Abstract—Forward projection of 3D voxel volumes (“X-ray
transform”) is one of the central and computation intensive
tasks of all iterative tomographic reconstruction algorithms. It is
typically implemented using ray driven algorithms such as the
often cited Siddon’s algorithm, traversing a voxel volume along
connecting lines between X-ray source and detector.

While the texture units of Graphical Processing Units (GPUs)
dedicated to fast read-only random memory accesses have long
been employed for tomographic reconstruction, their perfor-
mance advantage cannot be fully utilized in iterative techniques
which inherently require steady read-and-write memory accesses
to the to-be-reconstructed volume.

With the objective of accelerating iterative cone beam com-
puted tomography (CBCT) reconstruction methods operating
solely on read-and-write GPU main memory (RAM), a branchless
3D generalization of Joseph’s projection algorithm is presented
that is both highly efficient on GPU RAM and easy to implement.

The presented raycasting algorithm is benchmarked on a
recent consumer grade GPU and compared to a DDA algorithm
(equivalent to Siddon’s). It outperforms the latter both with
respect to memory access rate (factor 3.5) as well as total run
time both on GPU RAM and texture memory (factor 1.2). At
about 600 (740) GB/s of memory access rate, it computes over
350 (450) projections of a 5123 voxel volume per second on main
memory (texture memory).

I. INTRODUCTION

Iterative tomographic reconstruction techniques can be
roughly summarized as alternating simulation (i.e. cone beam
projection), correction (backprojection) and possibly regu-
larization (such as edge preserving denoising filters) steps.
Although both projection and backprojection can be expressed
as 3D image resampling operations well suited for acceleration
through GPUs’ texture units, the inherent requirement for
steady updates to the intermediate reconstruction results (also
by regularization procedures) make it preferable to store and
manipulate it within the read-and-write memory of the GPU
(also referred to as GPU RAM, GPU main memory or GPU
global memory).

Subject of this article will be the forward simulation, i.e.
the cone beam projection of a voxel volume and its efficient
GPU implementation. The rich literature body on the subject
of volume projection (not only tomography related) covers
both implementation efficiency as well as precision of forward
modeling, with varying definitions of what precise modeling
implies. Regarding efficient implementation, the main factors

are the complexity and amount of computations required to
determine the to-be-sampled memory addresses as well as
the corresponding interpolation weights for a given forward
model. Regarding modeling of volume and X-rays, there exist
mainly three notions of “exact”: cubic (or rectangular) voxels
pierced by pencil beams, cubic voxels pierced by beams with
rectangular profile, and smoothly overlapping voxels modeled
by radial basis functions of finite extent whose projections
can be exactly described by isotropic footprints (which may
further be convoluted with some beam profile).

The popular algorithm by Siddon [1] (also mentioned earlier
by [2]) belongs to the first class and can be easily imple-
mented in 2D and 3D using the Digital Differential Analyzer
otherwise known from line drawing and general purpose
ray tracing [3]. Extending it to model finite beam widths
requires oversampling, i.e. simulation of many rays within
a beam profile, making it computationally intensive. Direct
strip integral modeling for cubic voxels is simple in 2D [4],
yet rather involved in three dimensions [5]. Isotropic footprint
methods (e.g. [6], [7]), although simplifying projection at first,
introduce normalization issues as radial basis functions are
never space-filling.

Methods such as Joseph’s projector [8] or the recently
popular Distance Driven method [9] prioritize sampling con-
siderations over “exact” system modeling by some definition.
While the Distance Driven method is particularly well suited
for single threaded algorithms, Joseph’s algorithm lends itself
to massive parallelization. 3D extensions of it have e.g. been
shown in [10] for single threaded use on CPU and by [11] for
parallal GPU based volume projection utilizing stacks of 2D
textures.

In the following, a branchless 3D generalization of Joseph’s
algorithm will be presented that is simple to implement
and highly efficient on modern GPUs’ read-and-write main
memory (as opposed to texture memory). This is of particular
relevance for iterative reconstruction algorithms which steadily
need to update the volume. Its performance both with respect
to projection quality, GPU fill rate and total runtime will be
compared to a GPU friendly DDA (equivalent to Siddon’s
algorithm) implementatation [12], which is of comparable
complexity and popularity.

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

781

June 2017, Xi'an

DOI: 10.12059/Fully3D.2017-11-3203040

Figure 1. Illustration of the raycasting task: A ray ~r ∝ ~d − ~s originating
from source ~s traverses a voxel volume along its way to a detector pixel ~d.

II. METHOD: GENERALIZED JOSEPH PROJECTOR

The basic problem is illustrated in Fig. 1. A ray ~r originating
from a source position ~s traverses a voxel volume and hits
a detector pixel at location ~d. Along its intersection with the
volume, the latter will be sampled in steps of r̃ (cf. Fig. 2). For
convenience, the coordinate system is aligned with the voxel
grid, i.e. the origin is at the corner of the voxel volume and
all distance units will be expressed in terms of grid spacing.

A. Choice of sampling points

The sampling scheme will be based on the “driving axis”
concept: All sampling points within the volume along the ray
will be aligned to integer coordinates of one dedicated driving
axis. The driving axis m is defined by the largest component
of ~r:

m = argmax
i

(|ri|) . (1)

The required increment r̃ between successive sampling points
~p(i) is then:

r̃ =
~r

rm
. (2)

The first possible sampling point is located at the plane
perpendicular to the driving axis intersecting the coordinate
origin (at which the voxel volume is bounded):

[~s+ o r̃]m
!
= 0

⇒ o = −sm (3)

where o is the distance between source and first sampling plane
in units of the sampling increment r̃. o will thus be termed
“sampling offset”.

The volume can now be sampled at evenly spaced and
driving-axis-aligned sampling points

~p(i) = (~s+ o r̃) + i r̃ (4)

for integer i ∈ [0, imax], as illustrated in Fig. 2. imax is defined
by the extent of the voxel volume along the driving axis m.

These sampling points can readily be used for linear in-
terpolated 3D texture sampling directly provided by GPUs,
yielding a very brief and efficient projection algorithm.

Figure 2. Illustration of a ray running through 4-voxel groups (bottom) or
analogously piercing consecutive sampling planes aligned with the Cartesian
voxel grid and oriented perpendicular to the ray’s principal orientation
(“driving axis”). Projection along a ray is done by accumulating bilinear
interpolated samples from all intersected planes, weighted by the sampling
distance ‖r̃‖ ∈ (1,

√
3).

B. Sampling and interpolation

Sampling from GPU main memory further requires explicit
addressing of the 4-neighborhood {~v(i,1), ~v(i,2), ~v(i,3), ~v(i,4)}
of each sampling point among which interpolation is to be
applied. By construction, every sampling point ~p(i) as defined
by Eqs. 1–4 has (in 3D) at most two non-integer components.
These non-integer coordinates necessarily lie between two
integer ones along their respective axes. For each sampling
point, the group of four nearest neighbor voxels ~v(i,1−4)

(shown as 1× 2× 2 boxes in Fig. 2) can thus be identified by
regarding all combinations of floor and ceiling values of the
two non-integer components of ~p(i). By exploiting that floor
and ceiling values of an integer will be identical, this can be
conveniently formulated independent of the actual driving axis
m:

~v(i,1) = (
⌊
p

(i)
1

⌋
,
⌊
p

(i)
2

⌋
,
⌊
p

(i)
3

⌋
)

~v(i,2) = (
⌊
p

(i)
1

⌋
,
⌈
p

(i)
2

⌉
,
⌈
p

(i)
3

⌉
)

~v(i,3) = (
⌈
p

(i)
1

⌉
,
⌊
p

(i)
2

⌋
,
⌈
p

(i)
3

⌉
)

~v(i,4) = (
⌈
p

(i)
1

⌉
,
⌈
p

(i)
2

⌉
,
⌊
p

(i)
3

⌋
) (5)

where
⌊ ⌋

and
⌈ ⌉

designate the floor and ceiling operators
respectively.

Independent of m ∈ {1, 2, 3}, the vectors ~v(i,1−4) define
a group of at most four voxels in a plane perpendicular to
the driving axis. Special cases arise when either of the non-m
components of ~p(i) is also integer, which leads to only one or
two different ~v(i,1−4). These special cases will be handled by
the definition of the interpolation weights, which will evaluate
to zero for duplicate ~v.

Bilinear interpolation weights are based on the fractional
parts in the ~p(i) (corresponding to dimension-wise 1D dis-
tances to voxel grid points):

w
(i)
cl,j = p

(i)
j −

⌊
p

(i)
j

⌋
w

(i)
fl,j = 1− w

(i)
cl,j (6)

The driving axis components w
(i)
cl,m and w

(i)
fl,m are treated

specially and forced to be 1:

w
(i)
cl,m := w

(i)
fl,m := 1 (7)

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

782

Figure 3. Differences between analytic reference projections (based on
analytic integrals over the defining ellipses of the Shepp Logan phantom)
and numeric projections based on a discretely sampled Shepp Logan phantom
using different projection algorithms. From left to right: DDA (equivalent to
Siddon’s algorithm), 2×2 fold oversampled DDA, and the Generalized Joseph
Projector GJPlin.

so that 4 weights w(i,1−4) corresponding to the sampled voxel
grid locations ~v(i,1−4) can be defined:

w(i,1) = w
(i)
fl,1 w

(i)
fl,2 w

(i)
fl,3

w(i,2) = w
(i)
fl,1 w

(i)
cl,2 w

(i)
cl,3

w(i,3) = w
(i)
cl,1 w

(i)
fl,2 w

(i)
cl,3

w(i,4) = w
(i)
cl,1 w

(i)
cl,2 w

(i)
fl,3 (8)

The integral or sum over all sampling points, i.e. the projec-
tion, must finally be weighted by the sampling interval ‖r̃‖:

projection(~s, ~d) =

imax∑
i=0

4∑
k=1

‖r̃‖ voxelVolume
[
~v(i,k)

]
w(i,k)

III. RESULTS:

A. Projection quality

The proposed Generalized Joseph Projector is tested on
a Shepp Logan phantom. The performance with respect to
(implicit) system modeling is demonstrated on cone beam
projections of a three dimensional Shepp Logan phantom.
Analytic projections by means of exact line integrals through
the ellipses defining the phantom serve as reference. In order
to account for the finite beam extent, an array of 8×8 analytic
pencil beam integrals is averaged for each detector pixel. In
total 803 (≈ π

2 512) projections onto a 5122 pixel detector
from different orientations covering the full angular range
of 360° are computed for a 10° cone beam geometry. For
comparison with numeric projections, the phantom is rendered
on a 5123 voxel grid using 53 fold oversampling for edge anti-
aliasing. Fig. 3 shows deviations between numeric projections
from a finitely sampled voxel volume by means of different
algorithms from the reference analytic projections.

B. Projection speed

Run time performance is evaluated for projections of a
cylindric volume within a cubic bounding box of 5123 voxels
onto a 5122 pixel detector (as depicted above Table I) on a
recent Nvidia GTX 1080 GPU. The volume is stored in 32bit
floating point format in either main- or texture memory of the
graphics processing unit. As typical for computed tomography
setups, projections are performed for a multitude of source and
detector orientations over the full angular range of 360° on a

GJPlin GJPhw DDA DDA 2×2

GPU RAM 2.70 ms — 5.20 ms 6.74 ms
609 GB/s 104 GB/s 323GBs

Texture 2.40 ms 2.23 ms 3.46 ms 7.65 ms
686 GB/s 740 GB/s 157 GB/s 285 GB/s

Table I
BENCHMARK RESULTS ON AN NVIDIA GTX 1080 GPU FOR 10° CONE

BEAM PROJECTIONS

circular trajectory around the volume center. The rotational
axis is aligned parallel to the fastest index of the memory
layout (as also proposed in [13] for a Siddon-type algorithm).
Table I lists average runtimes for each projection for different
algorithms and memory choices. The table also displays the
corresponding rates at which memory is accessed.

IV. DISCUSSION AND CONCLUSION

The problem of driving axis based forward projection is ex-
pressed through a parametric vector formulation, which allows
a concise representation of the required sampling points. The
generally required case differentiation for the three possible
driving axes is avoided by suiting evaluation of the voxel grid
points that are to be sampled as well as the corresponding
interpolation weights. The simple and branchless computations
involved can be very efficiently handled by modern graphics
processing units. The driving axis approach, ensuring grid-
aligned steps through the voxel volume, ensures coherent
memory accesses by adjacent rays that are traced simultane-
ously. The particular choice of memory layout ensures that
for all projection angles there are always stacks of adjacent
rays (parallel threads) simultaneously accessing continuous
memory segments. This allows for extremely high projection
rates on the GPU main memory, which in contrast to texture
memory is not optimized for random accesses. For efficient
tomographic reconstruction, the generalized Joseph projector
can be combined with a voxel driven backprojection algorithm.
The linear interpolation kernel used may further be exchanged
by smoother options similar to [14].

The comparison with a GPU optimized version the classic
Siddon or DDA algorithm shows an overall runtime advantage
of GJP over DDA in terms of absolute runtime despite its
more than 3 times higher amount of total memory accesses.
Good utilization of GPU memory caches allows to exceed
the nominal memory transfer rate of the employed GPU,
indicating very high fill rates of its resources.

REFERENCES

[1] R. L. Siddon, “Fast calculation of the exact radiological path for a three-
dimensional CT array,” Medical Physics, vol. 12, no. 2, pp. 252–255,
1985.

[2] R. H. Huesman, G. T. Gullberg, W. L. Greenberg, and T. F. Budinger,
RECLBL Library Users Manual – Donner Algorithms for Reconstruction
Tomography, 1977.

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

783

[3] J. Amanatides and A. Woo, “A Fast Voxel Traversal Algorithm for Ray
Tracing,” Eurogrpahics, vol. 87, no. 3, p. 10, 1987. [Online]. Available:
http://www.cse.chalmers.se/edu/year/2015/course/TDA361/grid.pdf

[4] S. B. Lo, “Strip and Line Path Integrals with a Square Pixel Matrix: A
Unified Theory for Computational CT Projections,” IEEE Transactions
on Medical Imaging, vol. 7, no. 4, pp. 355–363, 1988.

[5] W. Yao and K. Leszczynski, “Analytically derived weighting factors for
transmission tomography cone beam projections,” Physics in Medicine
and Biology, vol. 54, no. 3, pp. 13–533, 2009.

[6] K. M. Hanson and G. W. Wecksung, “Local basis-function approach to
computed tomography,” Applied Optics, vol. 24, no. 23, pp. 4028–4039,
1985.

[7] R. M. Lewitt, “Alternatives to voxels for image representation in iterative
roconstruction algorithms,” Physics in Medicine and Biology, vol. 37,
no. 3, pp. 705–716, 1992.

[8] P. M. Joseph, “An Improved Algorithms for Reprojecting Rays Through
Pixel Images,” IEEE Transactions on Medical Imaging, vol. MI-1, no. 3,
pp. 192–196, 1982.

[9] B. De Man and S. Basu, “Distance-driven projection and backprojection
in three dimensions,” Physics in Medicine and Biology, vol. 49, no. 11,
pp. 2463–2475, 2004.

[10] C. Schretter, “A Fast Tube-of-Response Raytracer,” Medical Physics,
vol. 33, no. 12, pp. 4744–4748, 2006.

[11] F. Xu and K. Mueller, “Accelerating Popular Tomographic Recon-
struction Algorithms on Commodity PC Graphics Hardware,” IEEE
Transactions on Nuclear Science, vol. 52, no. 3, pp. 654–663, 2005.

[12] K. Xiao, D. Z. Chen, X. S. Hu, and B. Zhou, “Efficient implementation
of the 3D-DDA ray traversal algorithm on GPU and its application in
radiation dose calculation ,” Medical Physics, vol. 39, no. 12, pp. 7619–
7625, December 2012.

[13] W. M. Thompson and W. R. B. Lionheart, “GPU Accelerated Structure-
Exploiting Matched Forward and Back Projection for Algebraic Iterative
Cone Beam CT Reconstruction,” The Third International Conference on
Image Formation in X-Ray Computed Tomography, pp. 355–358, June
2014.

[14] J. Sunnegårdh and P. Danielsson, “A New Anti-Aliased Projection
Operator for Iterative CT Reconstruction,” 2007.

The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

784

	Fully3D'17_Proceedings_Updated_FoundationRevised_2 809
	Fully3D'17_Proceedings_Updated_FoundationRevised_2 810
	Fully3D'17_Proceedings_Updated_FoundationRevised_2 811
	Fully3D'17_Proceedings_Updated_FoundationRevised_2 812

