Spectral CT reconstruction with anti-correlated noise model and joint prior

Mats Persson, Jonas Adler


Published in:Fully3D 2017 Proceedings


Spectral CT allows reconstructing a set of material selective basis images which can be used for material quantification. These basis images can be reconstructed independently of each other or treated as a joint reconstruction problem. In this work, we investigate the effect of two ways of introducing coupling between the basis images: using an anti-correlated noise model and regularizing the basis images with a joint prior. We simulate imaging of a FORBILD Head phantom with an ideal photon-counting detector and reconstruct the resulting basis sinograms with and without these two kinds of coupling. The results show that the anti-correlated noise model gives better spatial resolution than the uncorrelated noise model at the same noise level, but also introduces artifacts. If anti-correlations are introduced also in the prior, these artifacts are reduced and the resolution is improved further.
Mats Persson
Departments of Bioengineering and Radiology, Stanford University
Jonas Adler
KTH Royal Institute of Technology
  1. T. R. C. Johnson, B. Krauß, M. Sedlmair, M. Grasruck, H. Bruder, D. Morhard, C. Fink, S. Weckbach, M. Lenhard, B. Schmidt, T. Flohr, M. F. Reiser, and C. R. Becker, “Material differentiation by dual energy CT: initial experience,” Eur. Radiol., vol. 17, no. 6, pp. 1510–1517, 2006. 
  2. J. Hsieh, “Dual-energy CT with fast-kVp switch,” Medical Physics, vol. 36, no. 6, pp. 2749–2749, 2009. 
  3. R.Carmi,G.Naveh,andA.Altman,“Materialseparationwithdual-layer CT,” in Nuclear Science Symposium Conference Record, 2005 IEEE, vol. 4, 2005, p. 3. 
  4. K. Taguchi and J. S. Iwanczyk, “Vision 20/20: Single photon counting x-ray detectors in medical imaging,” Med. Phys., vol. 40, no. 10, p. 100901, 2013. 
  5. J. Giersch, D. Niederl¨ohner, and G. Anton, “The influence of energy weighting on x-ray imaging quality,” Nucl. Instrum. Meth. A, vol. 531, no. 1–2, pp. 68 – 74, 2004, proceedings of the 5th International Workshop on Radiation Imaging Detectors. 
  6. P. M. Shikhaliev, “Energy-resolved computed tomography: first experimental results,” Phys. Med. Biol., vol. 53, no. 20, pp. 5595–5613, Oct. 2008. 
  7. J. P. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Bumer, C. Herrmann, R. Steadman, G. Zeitler, A. Livne, and R. Proksa, “Experimental feasibility of multi-energy photon-counting Kedge imaging in pre-clinical computed tomography,” Phys. Med. Biol., vol. 53, no. 15, pp. 4031–4047, Aug. 2008. 
  8. J. P. Ronaldson, R. Zainon, N. J. A. Scott, S. P. Gieseg, A. P. Butler, P. H. Butler, and N. G. Anderson, “Toward quantifying the composition of soft tissues by spectral CT with Medipix3,” Med. Phys., vol. 39, no. 11, pp. 6847–6857, 2012. 
  9. M. Persson, R. Bujila, P. Nowik, H. Andersson, L. Kull, J. Andersson, H. Bornefalk, and M. Danielsson, “Upper limits of the photon fluence rate on ct detectors: Case study on a commercial scanner,” Medical Physics, vol. 43, no. 7, pp. 4398–4411, 2016. 
  10. Z. Yu, S. Leng, S. M. Jorgensen, Z. Li, R. Gutjahr, B. Chen, A. F. Halaweish, S. Kappler, L. Yu, E. L. Ritman, and C. H. McCollough, “Evaluation of conventional imaging performance in a research wholebody CT system with a photon-counting detector array,” Phys. Med. Biol., vol. 61, no. 4, p. 1572, 2016. 
  11. R. E. Alvarez and A. Macovski, “Energy-selective reconstructions in x-ray computerised tomography,” Phys. Med. Biol., vol. 21, no. 5, pp. 733–744, Sept. 1976. 
  12. R. F. Barber, E. Y. Sidky, T. G. Schmidt, and X. Pan, “An algorithm for constrained one-step inversion of spectral CT data,” Physics in Medicine and Biology, vol. 61, no. 10, p. 3784, 2016. 
  13. Y. Long and J. A. Fessler, “Multi-material decomposition using statisticalimagereconstructionforspectralCT,”IEEETransactionsonMedical Imaging, vol. 33, no. 8, pp. 1614–1626, Aug 2014. 
  14. E. Roessl and R. Proksa, “K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors,” Phys. Med. Biol., vol. 52, no. 15, p. 4679, 2007. 
  15. H. Gao, H. Yu, S. Osher, and G. Wang, “Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM),” Inverse Problems, vol. 27, no. 11, p. 115012, 2011. 
  16. D. S. Rigie and P. J. L. Rivi`ere, “Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization,” Physics in Medicine and Biology, vol. 60, no. 5, p. 1741, 2015. 
  17. C. Schirra, E. Roessl, T. Koehler, B. Brendel, A. Thran, D. Pan, M. Anastasio, and R. Proksa, “Statistical reconstruction of material decomposed data in spectral CT,” Medical Imaging, IEEE Transactions on, vol. 32, no. 7, pp. 1249–1257, July 2013.
  18. R. Zhang, J. B. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh, “Model-based iterative reconstruction for dual-energy x-ray CT using a joint quadratic likelihood model,” IEEE Transactions on Medical Imaging, vol. 33, no. 1, pp. 117–134, Jan 2014. 
  19. A. Sawatzky, Q. Xu, C. Schirra, and M. Anastasio, “Proximal ADMM for multi-channel image reconstruction in spectral x-ray CT,” Medical Imaging, IEEE Transactions on, vol. 33, no. 8, pp. 1657–1668, Aug 2014. 
  20. K. M. Brown, S. Zabi´c, and G. Shechter, “Impact of spectral separation in dual-energy CT with anti-correlated statistical reconstruction,” Proceedings of The thirteenth International Meeting on Fully ThreeDimensional Image Reconstruction in Radiology and Nuclear Medicine, Newport, RI,USA, 2015. 
  21. M. Persson and F. Gr¨onberg, “Spatial-frequency-domain study of anticorrelated noise reduction in spectral CT,” in Proc. 4th Intl. Mtg. on image formation in X-ray CT, 2016, pp. 283–6. 
  22. D. Zeng, Z. Bian, C. Gong, J. Huang, J. He, H. Zhang, L. Lu, Q. Feng, Z. Liang, and J. Ma, “Iterative image reconstruction for multienergy computed tomography via structure tensor total variation regularization,” pp. 978349–978349–9, 2016. 
  23. W. Huh and J. A. Fessler, “Iterative image reconstruction for dual-energy X-ray CT using regularized material sinogram estimates,” in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, March 2011, pp. 1512–1515. 
  24. G. Lauritsch and H. Bruder, “FORBILD head phantom.” [Online]. Available: http://www.imp.uni-erlangen.de/forbild/english/results/head/ head.html 
  25. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, “XCOM: Photon Cross Section Database,” http://physics.nist.gov/xcom. National Institute of Standards and Technology, Gaithersburg, MD, 2005. 
  26. Tissue substitutes in Radiation Dosimetry and Measurement (report 44). International Commission on Radiation Units and Measurements, Bethesda, MD, 1989. 
  27. K.Cranley,B.J.Gilmore,G.W.A.Fogarty,L.Desponds,andD.Sutton. (1997) IPEM report 78: Catalogue of diagnostic x-ray spectra and other data, electronic version. York: IPEM. 
  28. E. Roessl and C. Herrmann, “Cram´er-Rao lower bound of basis image noise in multiple-energy x-ray imaging,” Physics in Medicine and Biology, vol. 54, no. 5, p. 1307, 2009. 
  29. J. Duran, M. Moeller, C. Sbert, and D. Cremers, “Collaborative total variation: A general framework for vectorial TV models,” SIAM Journal on Imaging Sciences, vol. 9, no. 1, pp. 116–151, 2016. 
  30. J. A. Fessler, “Grouped coordinate descent algorithms for robust edgepreserving image restoration,” Proc. SPIE, vol. 3170, pp. 184–194, 1997. 
  31. D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization.” Math. Program., vol. 45, no. 1-3, pp. 503–528, 1989.